SunGuidesM:

Implementation Plan – I-95 in District 5

SunGuide-IP-D5-I95-1.0.1

Prepared for:

Florida Department of Transportation Traffic Engineering and Operations Office 605 Suwannee Street, M.S. 90 Tallahassee, Florida 32399-0450 (850) 410-5600

October 16, 2006

Document Control Panel			
File Name:	SunGuide-IP-D5-I95-1.0.1		
File Location:	SunGuide CM Repository		
CDRL:	7-2		
	Name	Initial	Date
Created By:	Steve Dellenback, SwRI	SWD	9/25/06
	Robert Heller, SwRI	RWH	9/25/06
Reviewed By:	Steve Dellenback, SwRI	SWD	9/28/06
	Steve Dellenback, SwRI	SWD	10/2/06
	Steve Dellenback, SwRI	SWD	10/16/06
Modified By:	Steve Dellenback, SwRI	SWD	10/2/06
	Robert Heller, SwRI	RWH	10/12/06
Completed By:			

Table of Contents

List Rev	of Acro ision H	onyms istorv		iii iv
1.	Sco	pe		1
	1.1 1.2 1.3 1.4	Docui Projec Relate Conta	ment Identification ct Overview ed Documents cts	1 1 2 2
2.	Dep	loymei	nt Details	4
	2.1 2.2	Subsy FDOT	vstems To Be Installed Before Software Installation	4 4
		2.2.1 2.2.2	Servers Workstations	4 8
		2.2.3 2.2.4	Device Protocol Compliance Network Infrastructure	8 9
	2.3	2.2.5 SwRI:	Device Worksheets	10 15
		2.3.1	Server Preparation	15
		2.3.2	Workstation Preparation	15
		2.3.3	Software Installation	15
	24	2.3.4	Software Configuration	15
	2.4	2 4 1	Populate Tables	10 16
		2.4.1	Create Man Links	16
	2.5	FDOT	/SwRI: Testing	16
		2.5.1	Test Cases To Be Run	16
		2.5.2	Test Process	18
		2.5.3	FDOT Independent Verification and Validation (IV&V)	
			Procedures	18
		2.5.4	Issue Resolution and Retesting	18
	2.6	Traini	ng	18
	2.7	Deplo	yment Schedule	19
3.	Note	es		21

List of Acronyms

ARQ	Advanced Ramp Queue.
C2C	.Center-to-Center
CCTV	.Closed Circuit Television
ConOps	.Concept of Operations
CSE	.Computer Sizing Estimates
DASH	.Daytona Area Smart Highways
DMS	.Dynamic Message Sign
ЕН	.Executive Handler
FDOT	.Florida Department of Transportation
GUI	.Graphical User Interface
HAR	.Highway Advisory Radio
IIS	.Internet Information Server
IM	.Incident Management
IP	.Implementation Plan
ITS	.Intelligent Transportation Systems
IV&V	Independent Verification and Validation
MCP	.Manual Control Panel
ML	.Main Lane
NTCIP	National Transportation Communications for ITS Protocol
RMS	.Ramp Metering Subsystem
RWIS	Roadway Weather Information System.
SATP	.Software Acceptance Test Plan
SDD	.Software Design Document
SICP	.Software Integration Case Procedures
SIP	.Software Integration Plan
SRS	.Software Requirements Specification
SUM	.Software User's Manual
SwRI	.Southwest Research Institute
TCP/IP	.Transmission Control Protocol/Internet Protocol
ТМС	.Transportation Management Center
TSS	.Transportation Sensor Subsystem
TvT	.Travel Time
VDD	.Version Description Document

Revision	Date	Changes
1.0.0-Draft	September 28, 2006	Initial Release.
1.0.0	October 2, 2006	Updated with FDOT comments
1.0.1	October 16, 2006	Updated with FDOT comments regarding configuration and training

REVISION HISTORY

1. Scope

1.1 Document Identification

This document serves as the Implementation Plan (IP) for the SunGuideSM software specific to District 5. This plan is covering the deployment of SunGuideSM for devices located in the Daytona Area Smart Highways (DASH) deployment and three construction projects: DASH 1, DASH2 and DASH 3.

1.2 Project Overview

The Florida Department of Transportation (FDOT) is conducting a program that is developing SunGuideSM software. The SunGuideSM software is a set of Intelligent Transportation System (ITS) software that allows the control of roadway devices as well as information exchange across a variety of transportation agencies. The goal of the SunGuideSM software is to have a common software base that can be deployed throughout the state of Florida. The SunGuideSM software development effort is based on ITS software available from both the states of Texas and Maryland; significant customization of the software is being performed as well as the development of new software modules. The following figure provides a graphical view of the software to be developed:

Figure 1.1 - High-Level Architectural Concept

The SunGuideSM development effort was initiated in October 2003. The software has been deployed in multiple locations and enhancements are being implemented to expand the functionality of the software.

1.3 Related Documents

The following documents were used to develop this document:

- SwRI Qualification Response: Response to the Invitation to Negotiate (ITN): Statewide Transportation Management Center Software Library System, Negotiation Number: ITN-DOT-02/03-9025-RR, SwRI Proposal No. 10-35924, dated: November 18, 2002.
- SwRI Technical Proposal: Technical Proposal for Invitation to Negotiate (ITN): Statewide Transportation Management Center Software Library System, Negotiation Number: ITN-DOT-02/03-9025-RR, SwRI Proposal No. 10-35924, dated: January 31, 2003.
- SwRI Cost Proposal: Cost Proposal for Invitation to Negotiate (ITN): Statewide Transportation Management Center Software Library System, Negotiation Number: ITN-DOT-02/03-9025-RR, SwRI Proposal No. 10-35924, dated: January 31, 2003.
- SwRI BAFO letter: Southwest Research Institute[®] Proposal No. 10-35924, "Invitation to Negotiate (ITN): Statewide Transportation Management Center Software Library System", Reference: Negotiation Number: ITN-DOT-02/03-9025-RR, dated: May 5, 2003.
- FDOT procurement document: *Invitation To Negotiate (ITN), Negotiation Number: ITN-DOT-02/03-9025-RR, Statewide Transportation Management Center Software Library System,* dated: October 21, 2002.
- FDOT Scope of Services: *Statewide Transportation Management Center Software Library System: Scope of Services,* September 22, 2003.
- FDOT Requirements Document: Statewide Transportation Management Center Software Library System: Requirements Specification, June 3, 2003.
- Southwest Research Institute, *TMC Software Study*, November 15, 2001.
- Southwest Research Institute, *Introduction to an Operational Concept For the Florida Statewide Library*, FDOT OCD 1.0, March 31, 2002.
- World Wide Web Consortium (W3) website: <u>http://www.w3.org</u>.
- SunGuideSM Project website: <u>http://sunguide.datasys.swri.edu</u>.

1.4 Contacts

The following are contact persons for the SunGuideSM software project:

- Elizabeth Birriel, ITS Central Office, <u>elizabeth.birriel@dot.state.fl.us</u>, 850-410-5606
- Trey Tillander, FDOT SunGuideSM Project Manager, <u>trey.tillander@dot.state.fl.us</u>, 850-410-5617
- John Bonds, Senior ITS Specialist, jbonds@pbsj.com, 408-873-2514
- David Chang, ITS Specialist, <u>David.Chang@dot.state.fl.us</u>, 850-410-5622
- Steve Dellenback, SwRI Project Manager, <u>sdellenback@swri.org</u>, 210-522-3914
- Robert Heller, SwRI Software Project Manager, <u>rheller@swri.org</u>, 210-522-3824

The following are contacts that will be used by the SunGuideSM software project team to assure consistency with other FDOT projects and FDOT procedures:

- Liang Hsia, FDOT TERL, <u>liang.hsia@dot.state.fl.us</u>, 850-410-5615
- John Fain, FDOT, Comptroller, john.fain@dot.state.fl.us, 850-921-7332

2. Deployment Details

The following documents should be available to FDOT staff as they prepare for a SunGuideSM deployment (the most recent versions are available on the project web site):

- Computer Sizing Estimates (CSE)
- Concept of Operations (ConOps)
- Software Requirements Specification (SRS)
- Software Design Document (SDD)
- Version Description Document (VDD)
- Software User's Manual (SUM)
- Software Integration Plan (SIP)
- Software Acceptance Test Plan (SATP)
- Software Integration Case Procedures (SICP)

2.1 Subsystems To Be Installed

The following Release 2.1.2 SunGuideSM subsystems will be installed for the initial deployment at District 5:

- Administrative Editor
- Executive Handler
- Status Logger
- Data Bus
- Graphical User Interface/Map (GUI)
- Closed Circuit Television (CCTV)
- Dynamic Message Sign (DMS)
- Travel Time (TvT)
- Transportation Sensor Subsystem (TSS)
- Incident Management (IM)
- Center-to-Center (C2C)
- Web Server (WS)

As additional hardware is installed at District 5, additional subsystems will be added to the base deployment.

2.2 FDOT: Before Software Installation

The following sections describe the activities that FDOT staff needs to perform prior to the SunGuideSM software deployment.

2.2.1 Servers

The following table is extracted from the SunGuideSM *Computer Sizing Estimates* document and is used to quantify the number of SunGuideSM application servers required based on the subsystems to be installed. District 5 has procured two blade servers (each with 10 blades, each with dual CPUs and dual disk drives). The intent is to have one blade server in the Orlando control center and the other serving as a backup in the FDOT Deland facility. The intent is to allow the Deland server to server as a "warm" backup for the Orlando server with the data in the database being stored in both locations. Currently, final deployment plans for the second server

are still being finalized but it is envisioned that both servers will be identically configured so that they can serve as a backup for the other.

The first installation of SunGuideSM is going to focus on devices along the I-95 corridor. As a result, the sizing and configuration will be based on the number of devices that will be controlled in both the near and long term. As plans are made to convert the entire District to SunGuideSM, some additional computer capacity will be required. For the short term, based on the current equipment in the field (and currently in construction) along the I-95 corridor, the following estimated number of devices was used in this document:

- DMS devices: approximately 150
- CCTV devices: approximately 175 (each has a video encoder)
- TSS detectors: approximately 20 McCain and approximately 75 Wavetronix

SunGuide SM Subsystem	Number of Servers Required	District 5 Deployment
Status Logger	0.1	0.1
Data Bus		
Base system up to 500 ITS devices	0.5	0.5
Over 500 devices	0.5	0
User Interface		
For every 10 users simultaneously logged in	0.5	0.5
DMS (includes MAS)		
Base subsystem	0.5	0.5
For every 100 TCP/IP connected signs	0.5	1
For every 50 dialup signs (assumes 5 modems)	0.5	0
CCTV Control (includes Manual Control Panel [MCP])		
Base subsystem	0.25	0.25
For every 10 users simultaneously controlling cameras	0.25	0.25
Video Switching		
Base subsystem	0.50	0
For every 10 users simultaneously switching video	0.1	0
Video Wall		
Base subsystem	0.25	0
For each Barco/Argus Controller	0.1	0
TSS		
Base subsystem	0.25	0.25
For every 300 detectors	0.5	0.5
Incident Management		
Base subsystem for up to 20 concurrent incidents	0.25	0.25
For each 20 concurrent incidents over the base amount	0.25	0
Ramp Metering		
Base subsystem	0.50	0
For every 20 ramps	0.25	0
Roadway Weather Information System (RWIS)		
Base subsystem	0.25	0

SunGuide SM Subsystem	Number of Servers Required	District 5 Deployment
For every 50 TCP/IP connected sensors	0.25	0
Highway Advisory Radio (HAR)		
Base subsystem	0.25	0
For every 50 HARs	0.1	0
Archive		
Base subsystem	0.5	0.5
Safety Barrier		
Base Subsystem	.1	0
For every 50 Barriers	.1	0
Travel Time (TvT)		
Base Subsystem	.0.5	0.5
Web Servers (should be protected with a firewall)		
General Web server	1.0	1.0
Center-to-Center interface server	0.5	0.5
Emergency Evacuation	0.5	0
Maintenance Management Systems	0.5	0
Total SunGuide SM Application Servers Needed		6.6

The above analysis suggests that 6.6 servers would be needed to support the SunGuideSM installation as has been discussed with FDOT. Two additional machines will be required to support the Oracle Fail Safe database implementation. The sizing estimates in the *Computer Sizing Estimates* were based on best engineering judgment. After several installations it is clear that the estimates were extremely conservative; Southwest Research Institute[®] (SwRI[®]) believes that given the number of devices and based on the number of subsystems being initially deployed in District 5 that the existing blade server (10 blades, each blade with 2 CPUs and 2 disk drivers) that is to be located in the District 5 Orlando control center will be more than enough to support the SunGuideSM deployment.

The following software needs to be installed on the servers before the software installation team arrives on-site:

- Database servers (2 blades): Microsoft Enterprise Server 2003 with all current updates from Microsoft. Microsoft Enterprise Server 2003 is required for the clustered database environment that District 5 is planning to deploy and for support of Oracle Fail Safe.
- Application servers (8 blades): Microsoft Standard Server 2003 with all current updates from Microsoft

The software installation team assumes that FDOT will have licenses and installation media available for the following products:

- Microsoft Standard Server 2003
- Oracle 10g, version 10.1.0.2.0

The SunGuideSM software will be installed and configured on the blade server (10 separate dual processor machines) in the following configuration:

- D5ITSSRV28
 - o SL Viewer and Service
 - EH Viewer and Service
 - o Notify Manager
 - o Map Generator
 - o Web Admin
 - o Operator Map
- D5ITSSRV29
 - o SL Viewer
 - o EH Viewer
 - o DataBus
 - o Data Archive
- D5ITSSRV30
 - o SL Viewer
 - o EH Viewer
 - o DMS Subsystem, Polling, and Driver
 - o MAS
- D5ITSSRV31
 - o SL Viewer
 - EH Viewer
 - o CCTV
- D5ITSSRV32
 - o SL Viewer
 - o EH Viewer
 - o TSS
 - o RMS
- D5ITSSRV33
 - o SL Viewer
 - o EH Viewer
 - o Incident Management
 - o TVT
- D5ITSSRV34
 - o SL Viewer
 - o EH Viewer
 - o C2C
 - o Web Server
- D5ITSSRV35
 - o Oracle Server / Database SGD5
- D5ITSSRV36
 - o Oracle Failsafe (future)
- D5ITSSRV37
 - o SL Viewer and Service
 - o EH Viewer and Service

- o Notify Manager
- Map Generator
- Web Admin
- Operator Map
- o DataBus
- o Data Archive
- o DMS Subsystem, Polling, and Driver
- o MAS
- o CCTV
- o TSS
- o RMS
- Incident Management
- o TVT
- o C2C
- o Web Server

Notes:

- 1. The deployment team may choose to "split device drivers and subsystem" across different servers based on the expected availability of field devices when the software is initially configured.
- 2. D5ITSSRV37 contains a complete copy of the installed SunGuide system. In the event that servers within the configuration fail, the complete system can be started on D5ITSSRV37. Alternatively, the config.xml file for the system can be edited and the subsystems on the failed server started on D5ITSSRV37. This provides redundancy within the server set.
- 3. When the system is converted to Oracle Failsafe, it should be installed on D5ITSSRV36 and D5ITSSRV37, the database can then be copied from D5ITSSRV35 and the config.xml file re-pointed to the failsafe database. The complete system can then be re-installed on D5ITSSRV35.

2.2.2 Workstations

The following software must be installed on each workstation that will access the SunGuideSM software:

- Microsoft Windows XP, Service Pack 2
- Microsoft Internet Explorer 6.01 or greater
- Adobe SVG Viewer 3.0 (can be downloaded at no charge from the Adobe website)

2.2.3 Device Protocol Compliance

For the devices being deployed, FDOT needs to verify that the protocol used by the devices to be controlled by the SunGuideSM software is compliant to the following protocols:

Subsystem	Protocol Reference
DMS	NTCIP 1203, FDOT MIB (Sep 2001)
CCTV Control	NTCIP 1205 v01.08 Amendment 1 v01.08 (August 2004)

Subsystem	Protocol Reference
Video Switching	MPEG-2: VBrick 4200/5200
Traffic Detection	BiTrans B238-I4 (runs on a 170 controller)
Traffic Detection	Wavetronix RTMS: SS105 SmartSensor Data Protocol V2.02

In addition to verifying the protocols are compliant, the FDOT staff needs to verify the TCP/IP connectivity to the field devices prior to the on-site installation activities being performed. This can most simply be accomplished by using "ping" to verify that the device is accessible from the server room using the network that the SunGuideSM servers will be utilizing.

2.2.4 Network Infrastructure

The following sections described the network infrastructure that must be in place prior to installation of the SunGuideSM software.

2.2.4.1 Hardware

Due to the client/server nature of the SunGuideSM software, TCP/IP is used to exchange data between application servers. Due to the web based implementation of the SunGuideSM user interface, each SunGuideSM workstation requires TCP/IP access to the SunGuideSM application servers. FDOT needs to verify that TCP/IP connectivity exists between all SunGuideSM application servers and SunGuideSM workstations.

Early in the development of requirements for SunGuideSM, FDOT made the decision that the devices should be connected via TCP/IP to the SunGuideSM application servers. There are a number of techniques to connect traditional serial ITS devices so that they can be accessed via TCP/IP, these techniques include the use of a terminal server (a box that has a TCP/IP connection and has multiple serial ports) or a port server (a box that has a TCP/IP connection and a single serial port). The only exception to the use of TCP/IP access is that DMS devices can be accessed via a modem or directly through a serial port if the connection is made through a Windows "COM" port on the SunGuideSM application server running the DMS device driver.

It is FDOT's responsibility to provide all necessary network hardware and cables to provide the required connectivity.

2.2.4.2 Software

As the SunGuideSM software is configured, it will need access to various network servers that may be installed as part of the SunGuideSM installation or may be available as part of the greater FDOT network. The following network services need to be available and the details (e.g., host names, addresses) need to be available during the SunGuideSM software configuration:

- SMTP Mail Server: The SunGuideSM notify manager needs to be able to send emails on major system events so SMTP mail server access is required.
- DNS Server (optional): The SunGuideSM applications utilize TCP/IP to exchange data and the applications can use either IP addresses or host names in their configuration files. Note that the use of DNS is preferred because using explicit IP addresses is less flexible than using hostnames.

• Time Server (optional): It is recommended that all SunGuideSM computers be synchronized to a common time source as it is desirable during diagnostics to have the same time on all SunGuideSM systems.

2.2.5 Device Worksheets

The following sections describe the information that must be collected about each device that is to be utilized by the SunGuideSM software.

2.2.5.1 CCTV Worksheet

The following data needs to be collected for each CCTV to be configured:

Camera Name	Unique name of camera
Center Id	Unique name of center where camera resides
Dreate col	Specifies the protocol (values: SNMP, SNMP(PMPP))
Protocol	for camera
Poll Process	Name of driver for camera
Manufacturer	Manufacturer of camera
Location Description	Description of where camera resides
Roadway	Roadway of where camera resides
Direction	Direction of roadway where camera is installed
Latitude	Latitude of where camera resides
Longitude	Longitude of where camera resides
On Status	Operational status (values: Active, Error, Failed,
Op Status	OutOfService) of camera
	Address type (values: pmppAddress, commAddress)
Address Type1	for camera, if pmppAddress then camera uses SNMP
	(PMPP); if commAddress then camera uses SNMP
Addross Type?	Specific address type (values: portServerAddress) of
Address Type2	Address Type 1
Address	Device address of camera
Port Server IP	IP address for the port server where camera resides
Port Server Port Number	Port number for the port server where camera resides
Community Name	Community name for camera (SNMP)
Attach to Video Device	If selected, additional IP video parameters must be supplied.

The following data need to be provided for IP video:

Video Device IP Address	IP address for encoder
Blackout	Determines if camera restricted
Video Device Type	Type (IP video device) of video device for encoder
IP Streaming Driver ID	Unique IP video switch driver name
Card Number	Card number for VBrick encoder
Manufacturan	Manufacturer (values: Coretec, iMpath, Teleste,
Wanutacturer	VBrick) of encoder
Model	Model of encoder

Streaming Type	Streaming type (values: elementary, transport, program) for encoder
Secondary Interface	Secondary interface for VBrick encoder which enables users to maximize number of inputs for encoder
Snapshot Requested	Determines if snapshots are generated for encoder

2.2.5.2 DMS Worksheet

The following data needs to be collected for each DMS to be configured:

Sign Name	Unique name of DMS
Center Id	Unique name of center where DMS resides
	Specifies the protocol (values: SNMP,
Protocol	SNMP(PMPP), MarkIV, SunGuide (for
	Trailblazers)) for DMS
	Specifies how the DMS is connected to the
Connection Type	network (values: Direct, Modem, Long Distance
	Modem)
Poll Process	Name of driver for DMS
	Amount of time the driver will wait on a response
Packet Timeout	from a DMS before timing out (recommended time
	is 5 seconds)
	How many times a packet is attempted before it
Packet Retry Limit	errors out, for most signs the recommended number
	is 2, for signs prone to errors, this can be increased
	How many times a command is attempted before it
Command Retry Limit	errors out, a command consists of multiple packets.
	Recommended number is 1
Op Status	Operational status (values: Active, OutOfService)
	of DMS
Туре	Values: Fiber Optic, LED, Flip-Disk, Shutter
Manufacturer	Values: FDS, IDI, MarkIV, Telespot, Skyline
Number of Lines	Number of displayable lines
Beacons	Whether the sign has beacons, if so, specify the
	beacon address
Day Brightness Level	The numeric value for brightness setting in the
	daytime
Night Brightness Level	The numeric value for brightness setting in the
	nighttime
Location Description	A text field describing the location of the DMS
Roadway	Roadway on which this DMS resides
Direction	The direction of the roadway on which this DMS
	resides
Latitude	Latitude of where this DMS resides
Longitude	Longitude of where this DMS resides
Number of Columns	Number of characters that can be displayed using a
	normal font

Beacon Address	The address on which the sign receives activate/deactivate beacon requests
Address Type 1	Address type (values: PMPP, SunGuide, MarkIV) for DMS, if PMPP then DMS protocol should be SNMP (PMPP); if SunGuide or MarkIV, then DMS uses same protocol name
Address Type 2	Specific address type (values: Direct, PortServer, Dialup) of Address Type 1
Address	Device address of DMS
Community Name	Community name for DMS (SNMP)

The following data need to be provided for DMSs connected via a TCP/IP connection:

IP Address	IP address for the port server where DMS resides
Port Number	Port number for the port server where DMS resides

The following data need to be provided for DMSs connected directly via a serial port:

Communications port	Communications port to which the DMS is
Communications port	connected
Baud Rate	This should match the baud rate of the DMS
Data Bits	This should match the data bits the DMS is
	expecting
Stop Dita	This should match the stop bits the DMS is
Stop Bits	expecting
Parity	This should match the parity the DMS is
	expecting

The following data need to be provided for DMSs connected via a modem:

Phone Number	Phone number for the DMS, should include any prefix needed for dialing
Baud Rate	This should match the baud rate of the DMS

2.2.5.3 TSS Worksheet

The following data need to be provided for each Highway (Route) to be in the deployment:

Roadway Description	Textual description of the roadway (route)
Short Name	Short text name that will be seen by the operators
Directions	The directions that the roadway runs (can be multiple directions)
Cross Streets (multiple entries)	Textual descriptions of cross streets (that intersect the roadway); typically a roadway will have multiple cross streets
Lat Lon	Latitude and longitude of the intersection between the roadway and the cross street

Detector Name	Unique name of detector
Center Id	Unique name of center where detector resides
Driver Name	Name of driver for the detector (e.g., BiTrans, RTMS)
Poll Cycle	Time in seconds between device polls
Туре	Type of detector (e.g., Loop or Radar)
Drata and	Specifies the protocol (values: EIS, Wavetronix,
Protocol	BiTrans)
Op Status	Operational status (values: Available or Offline)
Location Description	Description of where detector resides
Roadway	Roadway of where detector resides
Direction	Direction of roadway where detector is installed
Latitude	Latitude of where detector resides
Longitude	Longitude of where detector resides
Address	Device address of detector
Port Server IP	IP address for the port server where detector resides
Port Server Port Number	Port number for the port server where detector resides

The following data needs to be collected for each TSS detector to be configured:

The following data needs to be collected for each lane that is to be configured:

TSS Link	The name of the links that will be defined in the
	system; links will have an association to detectors.
TSS Lanes	For each link, the name of each lane associated with
	the link; for each lane the zone number and description
	needs to be identified (e.g., which detection zone is
	associated with a lane).

The following data needs to be collected for each link that will have an alarm threshold to be configured:

TSS Link	The name of the links that will be defined in the system.
Threshold Value(s)	What the speed and occupancy values should be for each threshold (this includes a start and end time) value to be defined.

2.2.5.4 TvT Worksheet

The following data need to be provided for each travel time destination to be in the deployment:

Destination name	Used for displaying the name on a device for a
Destination name	travel time message.

The following data need to be provided for each travel time message template to be in the deployment:

Template name	Describes the template.
Namel an of destingtions	Number of destinations represented in this
Number of destinations	template.
	The message template contains tags and free
	text used to describe the travel time message.
	For example:
	[DEST1] [NEW LINE] [DIST1] [TVT1][NEW
Message template text	LINE] AT [TIME]
	would translate to this message:
	PALMETTO-EXIT 7
	7 MI 13-16 MIN
	AT 2:46 PM

The following data needs to be collected for each travel time link to be configured:

Travel time link name	Name of the travel time link.
Link description	Description of the link.
Associated TSS links	TSS links that supply data for this travel time link.

The following data needs to be collected for each device template that is to be configured:

Device id	Name of the device for which to setup the template.
Message template	The template to use for this device.
Destination data	Which destinations and travel time links are used for this device template.
Enabled	Whether travel times should be enabled for this device.

The following data needs to be collected for travel time options:

Frequency	How often travel time messages should be generated.													
Message priority	What	message	priority	should	be	used	for	the						
	messa	ges.												

2.3 SwRI: Software Installation

The following sections describe the activities that SwRI staff will perform to install the SunGuideSM software. SwRI will need administrative level access to any computer on which SunGuideSM software or Oracle is to be installed. FDOT staff should be available to monitor and observe the software installation process.

2.3.1 Server Preparation

The blade chassis with servers on which SwRI has previously installed SunGuide should be connected to the Orlando RTMC network and configured for operation on that network. No other preparation is necessary.

Note that the second rack of 10 blade servers that District 5 has targeted for deployment in the District 5 Deland offices will be configured at a later point in time by FDOT personnel.

2.3.2 Workstation Preparation

The following software needs to be installed on the workstations before the software installation team arrives on-site:

- Adobe SVG Viewer (must be acquired from Adobe.com)
- Roadgeek font (this is provided on the SunGuideSM install CD)

2.3.3 Software Installation

In order to install the SunGuideSM application software, the following steps will be performed by the software installation team:

- Upgrade the SunGuideSM R2.1.2 database to R2.2
- Upgrade the SunGuideSM R2.1.2 software to R2.2

Two SunGuideSM system administration applications do not execute in a browser environment. These applications should be installed on workstations that may be used to diagnose the health and status of the system; details of the application are contained in the SUM. SwRI will install the following applications on workstations as directed by FDOT:

- Executive Handler viewer: provides an overview of currently operating SunGuideSM applications
- Status Logger viewer: provides the ability to review the SunGuideSM application log files

2.3.4 Software Configuration

After the SunGuideSM software is installed, various configuration activities need to occur; the software installation team will perform the following configurations:

- Install and configure Status Logger on a single SunGuideSM application server (the SunGuideSM applications will log to this one instance of Status Logger)
- Install and configure Executive Handler server on all SunGuideSM application servers
- Modify the IIS to restrict access to the SunGuideSM Admin utility to users specified by FDOT

The SunGuideSM GUI is designed to load GUI components for the SunGuideSM applications. The loading (and overall performance) of the GUI can be improved if the GUI components associated

with subsystems not installed is removed. The software installation team will remove the GUI components for the subsystems that were not installed.

2.4 FDOT: Post Software Installation

The following sections describe the activities that FDOT staff need to perform after the SunGuideSM software deployment. SwRI staff will be available to assist and work with FDOT staff to accomplish these activities.

2.4.1 Populate Tables

Most of the SunGuideSM device database has previously been configured for the I-95 deployment. These tables were populated using the SunGuideSM Administration tool:

- User Management:
 - o Users
 - o Groups
 - o Workstations
- DMS:
 - Device Tables
 - o Approved Words
- CCTV:
 - o Device Tables
- TSS:
 - o Device Tables
 - o Detector Maps
- Incident Management:
 - o Contacts
- Miscellaneous:
 - o Centers

The SunGuideSM Software User's Manual (SUM) should be consulted on use of these editors.

2.4.2 Create Map Links

Each implementation of SunGuideSM must have a Map Link layer created; this layer is used by the operator map to display instrumented sections of roadway as well as highway shields. This layer is displayed in conjunction with the DynaMap shape file data to provide a complete looking map on the operator workstation. The SUM has a section titled "Map Administration with Link Editor" that explains the use of this software. Additionally, the Map Link Editor should be used to create the shields that should be displayed.

2.5 FDOT/SwRI: Testing

The following sections describe the testing that will be performed once the software is installed. The FDOT staff that will be testing the software should review the SunGuideSM testing documentation.

2.5.1 Test Cases To Be Run

The SunGuideSM Software Integration Case Procedures (SICP) document contains a set of stepby-step test procedures that are used to test the SunGuideSM software. Since a limited number of subsystems will be deployed in District 5, only the following tests will be executed during the SunGuideSM deployment:

- IC-1: Core Processes:
 - User Administration (AS-1)
 - o Display Software Version / System Health (SL-5)
 - Starting and Stopping SunGuideSM Services (EH-1)
 - SunGuideSM Auto Restart (EH-3)
- IC-2: Dynamic Message Sign:
 - Map Access to DMS (DMS-1)
 - Send DMS Message (DMS-2)
 - Support Message Libraries (DMS-4)
 - o High Level DMS Status Support (DMS-5)
 - DMS Sequences. (DMS-8)
 - Message Priority Queue (DMS-10)
 - o Alphabetized Message Library Management (DMS-11)
 - Multi Page Message Timing (DMS-13)
- IC-3: Video:
 - Map Access to Cameras (CCTV-1)
 - CCTV GUI High Level Status (CCTV-3)
 - NTCIP Driver Support (CCTV-4)
 - CCTV Auto Lock Request (CCTV-8)
 - Device Failure and Device Status Reporting (CCTV-10)
- IC-4: Transportation Sensor Subsystem comprised of the following test cases:
 - o TSS Data Updates (TSS-2)
 - TSS Generated Alarms (TSS-4)
- IC-5: Incident Management:
 - Event Creation (IM-1)
 - Event Management (IM-2)
 - Response Plan Implementation (IM-5)
 - Response Plan Generation (IM-7)
 - Decreasing IM Message Priority with Distance (IM-10)
 - o Incident Closure and Response Plan Cancellation (IM-11)
- IC-12: Center-to-Center:
 - o C2C Status (C2C-2)
 - C2C Command and Control (C2C-3)
- IC-13: Web Server:
 - Web Server View (WS-2)
- IC-16: Data Archiving:
 - Archive Device Status (DA-2)
 - o Incident Archive (DA-2)
 - Detector Archive (DA-2)

- Travel Time Archive (DA-2)
- RWIS Archive (DA-2)
- IC-17: Travel Time:
 - TvT Message Generation (TvT-1)

2.5.2 Test Process

During the testing process FDOT will be the lead tester and SwRI will be an observer. During testing, the following schedule will be followed:

- Short meeting to discuss which tests will be performed
- Testing performed
- Short meeting at the end of the day to discuss the testing results

2.5.3 FDOT Independent Verification and Validation (IV&V) Procedures

The FDOT plans to have a set of IV&V procedures that will be executed as part of the installation. The purpose of the IV&V procedures is to provide verification of the System Requirements. This test will be run by FDOT personnel (or their designees) and witnessed by SwRI. It is anticipated that this testing will occur during the same week as the installation.

2.5.4 Issue Resolution and Retesting

If during the testing process issues are identified, the installation team will attempt to resolve them while on-site and if they are resolved, the tests associated with the issue will be re-run at the discretion of FDOT.

2.6 Training

The following training classes will be provided to District 5 personnel once the hardware and software is installed and operational:

- Operator Training (will be offered twice) the intent of the Operator/User Interface course is to prepare personnel to use the SunGuideSM system on a daily basis in a typical operational mode. The course will include the following topics:
 - SunGuideSM System Administration fundamentals
 - Executive Handler fundamentals
 - Status Logger fundamentals
 - Graphical User Interface (GUI)/Map fundamentals
 - o Closed Circuit Television (CCTV) operations
 - o Dynamic Message Sign (DMS) operations
 - Traffic Sensor Subsystem (TSS) fundamentals
 - o Incident Management operations
 - Travel Time fundamentals
 - o Center-to-Center (C2C) fundamentals
- Administrator Training (will be offered once) the intent of the System Administration/Deployment course is to prepare personnel to install/configure the SunGuideSM software and administer the SunGuideSM system on a daily basis. The course will include the following topics:
 - Installation procedures
 - Backup procedures

- Recovery procedures
- o Modifying hardware configurations
- o Tailoring of the system environment
- Starting/stopping/restarting the system
- o Troubleshooting:
 - Executive Handler
 - Status Logger
- o Workstation installation

Both of the classes are "hands-on" and access to the SunGuideSM software needs to be available to facilitate the training. All training will be conducted in the Orlando RTMC.

2.7 Deployment Schedule

The following schedule is proposed for the deployment. The installation team will need access to hardware devices throughout the implementation process. Note that if activities complete early then if FDOT and SwRI agree the timing for the following events may be modified to shorten the overall deployment schedule.

Note that the long term plan is to install a redundant blade server in the FDOT Deland facilities. Until the implementation team fully understands the technical implementation of a "redundant" database across the network the deployment activities will not be scheduled. The current plan is for District 5 personnel to perform the SunGuideSM software installation with assistance from SwRI staff.

Implementation Plan

ID	Task Name	Duration	Start	Finish																															
		Balaton	oun		Week 1						Week 2						Week 3						Week 4						Week 5						
					S	S	MT	W	TF	- 5	3 S	M	1 T	W	T F	S	S	M	Т	W	Т	F S	S	M	T	W	TF	: S	S	M	Т	W	T	F	S
1	Server Configuration	18 days	Tue 9/26/06	Thu 10/19/06			\sim																				\sim								
2	Preparation at SwRI (includes database)	10 days	Tue 9/26/06	Mon 10/9/06																															
3	Ship to District 5	3 days	Tue 10/10/06	Thu 10/12/06																															
4	Install in D5 (FDOT Activity)	5 days	Fri 10/13/06	Thu 10/19/06																	Ľ														
5	Site Installation and Checkout (Orlando)	3 days?	Mon 10/23/06	Wed 10/25/06																										\sim			\sim		
6	Verify Software Operation	1 day?	Mon 10/23/06	Mon 10/23/06																															
7	Test Field Connectivity	3 days	Mon 10/23/06	Wed 10/25/06																															
8	Software Testing	1 day	Wed 10/25/06	Wed 10/25/06																													.		
9	Training	1.38 days	Wed 10/25/06	Thu 10/26/06																												\sim	\sim		
10	Operator Class (afternoon)	3 hrs	Wed 10/25/06	Wed 10/25/06																															
11	Operator Class (Morning)	3 hrs	Thu 10/26/06	Thu 10/26/06																															
12	Administrator Class (afternoon)	3 hrs	Thu 10/26/06	Thu 10/26/06																															

3. Notes

None.