
SunGuideSM:

Software Architecture Guidelines
SunGuide-SAG-1.0.0

Prepared for:

Florida Department of Transportation
Traffic Engineering and Operations Office
605 Suwannee Street, M.S. 90
Tallahassee, Florida 32399-0450
(850) 410-5600
February 16, 2007

Software Architecture Guidelines

SunGuide-SAG-1.0.0 i

Document Control Panel

File Name: SunGuide-SAG-1.0.0.doc
File Location: SunGuide CM Repository
CDRL: n/a

Name Initial Date

Steve Dellenback, SwRI SWD 11/03/06 Created By:
Lynne A. Randolph, SwRI LAR 11/03/06
Steve Dellenback, SwRI SWD 11/30/06
Steve Dellenback, SwRI SWD 1/17/07
Steve Dellenback, SwRI SWD 2/16/07

Reviewed By:

Steve Dellenback, SwRI SWD 1/17/07
Lynne A. Randolph, SwRI LAR 1/21/07

Modified By:

Completed By:

Software Architecture Guidelines

SunGuide-SAG-1.0.0 ii

Table of Contents

Page
List of Tables .. iv
List of Figures .. iv
List of Acronyms... v
Revision History.. vii
1.0 Scope.. 1

1.1 Document Identification .. 1
1.2 Project Overview.. 1
1.3 Related Documents ... 2
1.4 Contacts ... 3

2.0 Creating SunGuideSM Software .. 4
2.1 Configuration File .. 5
2.2 Status Logger... 7
2.3 Service and Heartbeat ... 8
2.4 XML Interface ... 9
2.5 User Permissions .. 11
2.6 Database Access ... 13
2.7 Interfaces.. 13

2.7.1 Interface Control Documents...14
2.7.2 Data Bus...14

2.8 Subsystem Development .. 16
2.8.1 Creating a Project...17
2.8.2 Steps to Start ..17
2.8.3 Running the Subsystem ...22
2.8.4 Finishing the Subsystem ..22

2.9 Driver Development... 22
2.9.1 Creating a Project...22
2.9.2 Steps to Start ..23
2.9.3 Running The Driver ...25

3.0 Notes... 26

Software Architecture Guidelines

SunGuide-SAG-1.0.0 iii

List of Tables

Page
Table 2.1 - Language Specific Development Tools.. 4
Table 2.2 - Sample Configuration File Values ... 7
Table 2.3 - Sample Log Message.. 8
Table 2.4 - Login Error Messages... 12
Table 2.5 - Development Tools .. 16

List of Figures

Page
Figure 1.1 - High-Level Architectural Concept.. 1
Figure 2.1 - Generic Capabilities .. 5
Figure 2.2 - Status Logger .. 8
Figure 2.3 - Executive Handler... 9
Figure 2.4 - XML Interface Classes.. 10
Figure 2.5 - Generic Handlers... 10
Figure 2.6 - XML Handling .. 11
Figure 2.7 - User Permission Tables... 12
Figure 2.8 - Database Classes ... 13
Figure 2.9 - Data Bus Overview ... 15
Figure 2.10 - Data Bus Connections ... 15

Software Architecture Guidelines

SunGuide-SAG-1.0.0 iv

List of Acronyms

C2CCenter-To-Center
DLL............................Dynamic Link Library
DMS………………...Dynamic Message Sign
DOM………………...Document Object Model
EHExecutive Handler
FDOTFlorida Department of Transportation
ICD.............................Interface Control Document
IDE………………….Integrated Development Environment
IM…………………...Incident Management
ITN.............................Invitation to Negotiate
ITS..............................Intelligent Transportation Systems
RMS………………...Ramp Metering Subsystem
SAG............................Software Architecture Guidelines
SwRISouthwest Research Institute®

XIM............................XML Interface Manager
XML...........................Extensible Markup Language

Software Architecture Guidelines

SunGuide-SAG-1.0.0 v

Revision History
Revision Date Changes

1.0.0-Draft November 30, 2006 Initial Release.
1.0.1-Draft January 17, 2007 Updated with comments from FDOT CO

1.0.0 February 16, 2007 Updated with CO comments and released for general
distribution

Software Architecture Guidelines

SunGuide-SAG-1.0.0 1

1.0 Scope

1.1 Document Identification
This document serves as the Software Architecture Guidelines (SAG) for the SunGuideSM

software.

1.2 Project Overview
The Florida Department of Transportation (FDOT) is conducting a program that is developing
SunGuideSM software. The SunGuideSM software is a set of Intelligent Transportation System
(ITS) software that allows the control of roadway devices as well as information exchange across
a variety of transportation agencies. The goal of the SunGuideSM software is to have a common
software base that can be deployed throughout the state of Florida. The SunGuideSM software
development effort was based on ITS software available from both the states of Texas and
Maryland. In addition to the reuse of software (along with customization of the this software), a
number of new software modules are being developed. The following figure provides a graphical
view of the software being developed:

Figure 1.1 - High-Level Architectural Concept

Software Architecture Guidelines

SunGuide-SAG-1.0.0 2

The SunGuideSM development effort spans approximately two years. After the development, the
software will be deployed to a number of Districts and Expressway Authorities throughout
Florida and support activities will be performed.

1.3 Related Documents
The following documents were used to develop this document:

 SwRI Qualification Response: Response to the Invitation to Negotiate (ITN): Statewide
Transportation Management Center Software Library System, Negotiation Number: ITN-
DOT-02/03-9025-RR, SwRI Proposal No. 10-35924, dated: November 18, 2002.

 SwRI Technical Proposal: Technical Proposal for Invitation to Negotiate (ITN):
Statewide Transportation Management Center Software Library System, Negotiation
Number: ITN-DOT-02/03-9025-RR, SwRI Proposal No. 10-35924, dated: January 31,
2003.

 SwRI Cost Proposal: Cost Proposal for Invitation to Negotiate (ITN): Statewide
Transportation Management Center Software Library System, Negotiation Number: ITN-
DOT-02/03-9025-RR, SwRI Proposal No. 10-35924, dated: January 31, 2003.

 SwRI BAFO letter: Southwest Research Institute® Proposal No. 10-35924, “Invitation to
Negotiate (ITN): Statewide Transportation Management Center Software Library
System”, Reference: Negotiation Number: ITN-DOT-02/03-9025-RR, dated: May 5,
2003.

 FDOT procurement document: Invitation To Negotiate (ITN), Negotiation Number: ITN-
DOT-02/03-9025-RR, Statewide Transportation Management Center Software Library
System, dated: October 21, 2002.

 FDOT Scope of Services: Statewide Transportation Management Center Software
Library System: Scope of Services, September 22, 2003.

 FDOT Requirements Document: Statewide Transportation Management Center Software
Library System: Requirements Specification, June 3, 2003.

 Southwest Research Institute, TMC Software Study, November 15, 2001.

 Southwest Research Institute, Introduction to an Operational Concept For the Florida
Statewide Library, FDOT – OCD – 1.0, March 31, 2002.

 World Wide Web Consortium (W3) website: http://www.w3.org.

 SunGuideSM Project website: http://sunguide.datasys.swri.edu., documents that should be
reviewed include:

o Software Design Document (SDD)
o Version Description Document (VDD)
o Interface Control Documents (ICDs):

 Closed Circuit Television
 Data Bus - Client Interface Manager
 Data Bus - Provider Template
 Dynamic Message Sign
 General

Software Architecture Guidelines

SunGuide-SAG-1.0.0 3

 Highway Advisory Radio
 Incident Management
 Inventory and Maintenance
 Message Arbitration Subsystem
 Roadway Weather Information System
 Safety Barrier
 Transportation Sensor Subsystem
 Travel Time
 Video Switch
 Video Wall

1.4 Contacts
The following are contact persons for the SunGuideSM software project:

 Elizabeth Birriel, ITS Central Office, elizabeth.birriel@dot.state.fl.us, 850-410-5606
 Trey Tillander, FDOT SunGuideSM Project Manager, trey.tillander@dot.state.fl.us, 850-

410-5617
 John Bonds, Senior ITS Specialist, jbonds@pbsj.com, 408-873-2514
 David Chang, ITS Specialist, David.Chang@dot.state.fl.us, 850-410-5622
 Steve Dellenback, SwRI Project Manager, sdellenback@swri.org, 210-522-3914
 Robert Heller, SwRI Software Project Manager, rheller@swri.org, 210-522-3824

The following are contacts that will be used by the SunGuideSM software project team to assure
consistency with other FDOT projects and FDOT procedures:

 Liang Hsia, FDOT TERL, liang.hsia@dot.state.fl.us, 850-410-5615
 John Fain, FDOT, Comptroller, john.fain@dot.state.fl.us, 850-921-7332

Software Architecture Guidelines

SunGuide-SAG-1.0.0 4

2.0 Creating SunGuideSM Software
The majority of processes incorporated in the SunGuideSM architecture were developed using
C#.NET. As many subsystems and drivers were included in the initial release, a generic
framework was developed to allow base functionality to be provided. This allowed subsystems
and drivers to utilize the same code for functionality that was required of all processes. The
library provides classes and methods for logging messages to the Status Logger, performing
communication with the Executive Handler (EH), connecting to an Oracle database, and other
common tasks.
Some of the processes, including the Dynamic Message Sign (DMS) processes, Incident
Management (IM), and the Ramp Metering Subsystem (RMS) were developed using the Java
coding language. Java was used where an existing code base already existed for a particular
subsystem. Table 2.1 shows the various tools used during development for both languages (note
that the SunGuideSM Version Description Document should be referenced for specific version
numbers).

Table 2.1 - Language Specific Development Tools

Tool C#.NET Java
Compiler Visual Studio C# Sun Java Compiler
Integrated Development
Environment (IDE)

Visual Studio .NET 2005 Intellij IDEA

Refactoring Productivity Tool Jetbrains Resharper Included in the IDE
Configuration Management Visual Source Safe Visual Source Safe
XML Schema development XML Spy XML Spy

The SunGuideSM architecture utilizes Extensible Markup Language (XML) ICDs to provide an
easily understandable interface to the system. Figure 2.1 shows an overview of the capabilities
included in the generic library. The shaded circles represent functionality that exists in both the
generic subsystem and driver. The non-shaded circles contain functionality utilized solely by the
generic subsystem. The following sections detail a summary of each functional area.

Software Architecture Guidelines

SunGuide-SAG-1.0.0 5

Status
Logger

Database
Access

Configuration
File

User
Permissions

Service and
Heartbeat

XML
Interface

Main Process

Figure 2.1 - Generic Capabilities

The benefits of creating software using the generic library are numerous.
• Saves time and effort during development; a working subsystem shell can be created in

several hours.
• Handler framework allows new functionality to be self-contained.
• Basic functionality is provided and uses the same format as other systems. If a bug is

found in common functionality, fixing it once fixes it everywhere. Reduces risk of
forgetting basic functionality.

• Reduces learning curve for maintaining other processes. Once a developer understands
how the framework functions, maintaining another process becomes much easier.

2.1 Configuration File
SunGuideSM subsystems and drivers extract information for startup, communication with other
processes, and system parameters from an XML configuration file. This file is located on a
shared drive and the same file is used for all SunGuideSM processes. The Data Bus utilizes this
configuration file to determine what providers are available and what type of data will be stored
and updated by each provider.
Both the generic subsystem and the driver contain the necessary code for reading values from the
configuration file. These values include the common connectivity information such as host and
port as well as other process specific values. The XML shown below is a configuration file entry
for a sample subsystem. The subsystem name in this instance is “sb”. One of the command line
parameters for a subsystem is the name of the process. This is used to retrieve the appropriate
configuration file values for that process. A driver has an additional parameter for the subsystem
to which it belongs, allowing it to be uniquely identified.

<sb>
 <host>129.162.101.113</host>

Software Architecture Guidelines

SunGuide-SAG-1.0.0 6

 <port>40008</port>
 <icdVersion>1.0</icdVersion>
 <maxConnections>20</maxConnections>
 <logLevel>slInfo</logLevel>
 <validation>false</validation>
 <commTolerance>3</commTolerance>
 <providerType>sbStation</providerType>

<customTag>myValue</customTag>
 <handlers>
 <gov.its.sb.xml.SbRetrieveDataHandler/>
 <gov.its.sb.xml.SbSubscribeHandler/>
 <gov.its.sb.xml.SbStatusHandler/>
 <gov.its.sb.xml.SbBarrierEventHandler/>
 <gov.its.sb.xml.SbConfigurationHandler/>
 <gov.its.sb.xml.SbControlHandler/>
 </handlers>
 <subscriptions>
 …
 </subscriptions>
 <statusUpdates>
 …
 </statusUpdates>
 <drivers>
 <driver>
 <identifier>SBDriver</identifier>
 <host>129.162.101.113</host>
 <port>40088</port>
 <logLevel>slInfo</logLevel>
 <validation>false</validation>
 <icdVersion>1.0</icdVersion>
 <maxConnections>10</maxConnections>
 <packetTimeout>5000</packetTimeout>
 <packetRetries>1</packetRetries>
 <pulseRate>30</pulseRate>
 <handlers>
 <gov.its.sb.driver.xml.SbDriverConfigHandler/>
 <gov.its.sb.driver.xml.SbDriverControlHandler/>
 <gov.its.sb.driver.xml.SbDriverUpdateHandler/>
 </handlers>
 </driver>
 </drivers>
 </sb>

Table 2.2 shows a brief description of the various entries and how they are handled.

Software Architecture Guidelines

SunGuide-SAG-1.0.0 7

Table 2.2 - Sample Configuration File Values

Config File Tags Handling by Generic
host
port
maxConnections

Used to create the listener socket. This is the socket to which
clients will connect.

icdVersion Saved and used to validate that XML being received is the
appropriate ICD version.

logLevel Determines the log level of the process used on startup. This
may be changed during runtime by the EH.

validation Whether XML should be validated against the schema. This
is typically used during development only as validation slows
down processing time of XML.

commTolerance Used for device related subsystems. This determines the
number of consecutive communications which must fail
before the device is moved from Error to Failed status.

providerType Used by Data Bus to determine what type of provider this
subsystem is.

handlers The list of handlers are XML processing classes that should
be instantiated at runtime.

subscriptions
statusUpdates

These are used by Data Bus and will be explained in Section
 2.7.2. Generic does not read these configuration values.

packetTimeout Used by the driver to determine how long to wait for a
response from a device before timing out.

packetRetries The number of times a packet will be retried before failing.
pulseRate How frequently a device should be polled. This value may

only be a default, depending on the particular driver.

The configuration file portion of the generic library may also be used to read custom tags from
the file. An example of this in the XML above would be the tag, <customTag>, which may be
read and used by a process utilizing the generic library.

2.2 Status Logger
The status logging portion of the generic library provides logging functionality. First, the
connection to status logger is made using the status logger configuration values. Next, the status
logger component uses the logLevel read from the configuration file to determine what level of
logging is required. For example, if the logLevel is slInfo, no debug or detailed messages will be
logged. If the EH is later used to change the log level to slDetail, the status logger component
will accordingly adjust the level of detail logged. As shown in Figure 2.2, the subsystems use a
status logger client library for communication with the service.

Software Architecture Guidelines

SunGuide-SAG-1.0.0 8

Figure 2.2 - Status Logger
Alternatively, if the status logger service cannot be reached, the status logger component will log
to a file in the directory from which the process is running. If the status logger service later
begins functioning, the logging will be moved to the process at that time. Example code for
logging a message using the generic framework is described in Table 2.3.

Table 2.3 - Sample Log Message

Sample Message Field Description
MainProcess.logMessage(The static method for

logging a message, part of
the main process.

StatusLogger.level.slDebug, What type of message is to
be logged (slError, slWarn,
slInfo, slDebug, slDetail)

(int)crm.GetObject("ADD_MSG_CODE"), The numeric code for this
message, should be a
constant, not hard coded.

GetType().Name, The name of the class
logging the message.

MethodInfo.GetCurrentMethod().Name, The method name from which
the log message is
initiated.

"Adding message to queue: " + device.getId() +
", msg: " + msg.getMsgText());

The actual message to be
logged, should contain as
much detail as needed.

2.3 Service and Heartbeat

The generic library contains functionality for communicating with the EH server as shown in
Figure 2.3. The EH viewer may be used to send commands to processes and view the current
status. The generic library is responsible for sending heartbeat messages to the server at the

Software Architecture Guidelines

SunGuide-SAG-1.0.0 9

appropriate interval. This communication is transparent to any process extending the generic
framework.

Figure 2.3 - Executive Handler
In addition to status, the EH viewer may be used to send commands to processes. These
commands include changing the log level, starting and stopping the process. The generic library
contains methods to perform each of those actions when requested by the EH viewer.

2.4 XML Interface
The XML interface portion of the generic library contains functionality for sending, receiving,
and handling XML requests, messages, and responses. This component includes the generic
main process which is responsible for creating the XML interface, XML handlers, and the
communication classes. Figure 2.4 shows the classes which compose this component.

Software Architecture Guidelines

SunGuide-SAG-1.0.0 10

Figure 2.4 - XML Interface Classes

The generic process contains several handlers shown in Figure 2.5 which implementing
processes utilize. The handlers provide the following functionality:

• SetPropertiesHandler—handles the setSystemPropertiesReq, which allows modifying
the log level and whether XML validation should be used.

• UpdateSystemDataHandler—handles the updateSystemDataMsg, allowing a process to
update cached data from the database.

• ClientDisconnectHandler—handles the clientDisconnectMsg, allowing a process to
properly remove a connected client.

• DefaultHandler—provides a generic error response if a message or request is received
for which no handler is registered.

• AuthenticateHandler—allows subsystems to handle an authenticateReq and log users
into the system. A subsystem must only implement a User class to receive this
functionality.

Figure 2.5 - Generic Handlers

Software Architecture Guidelines

SunGuide-SAG-1.0.0 11

One of the primary functions provided by the XML interface is handling XML requests,
messages and responses. Figure 2.6 shows how requests are handled by the XML Interface
Manager (XIM). When a client sends a request, the XIM checks which handler has registered to
handle the request. The handler determines whether this is a request to be forwarded to a driver
or can be handled immediately. The blue lines show the path when a request is sent to the driver.
Once a response is received from the driver, the handler sends it to the appropriate client or
clients. The red lines show the path when the request can be handled immediately and a
response returned to the client.

XML
Interface
Manager

Handler

Sends
XML

Request

Returns request
or response

Forwards to
appropriate

handler

Client

Send Request
or Response Database

Device
Driver

Returns Response

Stored Data

Returns
Response

Forwards to
appropriate

handler

Returns response

Returns Response

Sends request
to device driver

Figure 2.6 - XML Handling

All communications are asynchronous, permitting multiple requests to be handled without
requiring the system to wait until a response is generated. Asynchronous communication is
especially important for requests which cannot be completed immediately, allowing the process
to continue to be responsive to clients.

2.5 User Permissions
For subsystems created using the generic library, a user permission component is included. This
component utilizes the DbUser class that is part of Database Access. When creating the DbUser,
the subsystem specifies the subsystem name for which permissions and users should be retrieved.
The database tables (subsystems, subsystem_permissions, users and user_permissions) shown in
Figure 2.7 are used to store the permissions for the various subsystems.

Software Architecture Guidelines

SunGuide-SAG-1.0.0 12

Figure 2.7 - User Permission Tables
When retrieving users from the DbUser, only users with permissions for that subsystem will be
retrieved. Once the users are obtained, a Security Controller is created with the list of users. The
authenticate handler contained within the generic framework uses this Security Controller when
an authenticate request is received. If the user can be logged into the Security Controller, a user
with the appropriate permissions is used to verify permissions for subsequent requests. If the
user cannot be logged in, an appropriate error response is returned to the requestor. The possible
error messages are shown in Table 2.4 -.

Table 2.4 - Login Error Messages

Error Message Description
"Bad user name or password." The user does not exist or the password is

incorrect.
"No user name or password provided." Tried to login with an empty user name or

password.
"User does not have system access
permission"

Some subsystems have a “system access”
permission required to login, and this user does
not have that permission.

"No users exist with permissions to
this subsystem."

This is a special error message, useful for new
subsystems for which administrators might not
have assigned permissions.

"There was an error logging out the
user which was already connected."

The user was already logged in and could not
be logged out.

Software Architecture Guidelines

SunGuide-SAG-1.0.0 13

2.6 Database Access
A library of database classes contained in the generic library allows database communication to
be abstracted. First, as discussed in the user permissions section, the DbUser retrieves users with
subsystem permissions for validating logins. A DbItem class exists which handles connecting to
the database and performing the appropriate actions. Each class that handles database items
should extend DbItem to gain this functionality. The classes used by the Database Access
component are shown in Figure 2.8.

Figure 2.8 - Database Classes
The database access component includes helper classes for database methods. The
DatabaseCommand class handles ensuring a database connection exists, throwing exceptions if
errors occur, and reconnecting to the database if needed. The CommandList class allows a list of
database commands to be executed using a transaction. Then, if any statements fail, the entire
list of commands will be rolled back. When executing any commands, the connection must
always be closed before returning from the method. This allows the database cursors to be
released. If commands are not closed properly, Oracle may throw a “Too many open cursors”
error. The sample code below shows the proper method for executing and closing a command:
 updateOpstatusCommand.setParameter("1", opStatus);
 updateOpstatusCommand.setParameter("2", harId);
 int numRows = updateOpstatusCommand.executeCommand();
 updateOpstatusCommand.closeConnection();

2.7 Interfaces
The following sections describe the use of SunGuideSM interfaces. The following definitions
apply to the discussion in the following sections:

• Data Bus Centric: the SunGuideSM architecture is not a “database centric application"
(i.e. an application that uses a database to exchange data between software processes);
SunGuideSM utilizes a XML DOM (Document Object Model) tree based application
(Data Bus) that stores the real-time data in memory on the server running the Data Bus.
The primary advantage to this architecture is performance because the Data Bus access is
extremely fast as opposed to having all real-time data move through a long term
persistent store such as relational database. This concept is appropriate for Traffic
Management Center applications because the real-time data is quickly “out of date” and

Software Architecture Guidelines

SunGuide-SAG-1.0.0 14

other than storing this data for archival purposes there is not a need to store this data in a
classical relational database.

• Subsystem: a SunGuideSM subsystem is a software process that implements a set of
closely related functional requirements (e.g. DMS, CCTV, etc.). A subsystem provides
data to the Data Bus to make the data available to other SunGuideSM subsystems.

• Clients: when processes log into subsystems (e.g. the GUI logs into the DMS
subsystem) they become a “client” to the subsystem to which they logged into. As a
client, they can subscribe for status data (which is typically retrieved from the Data Bus)
 and transmit command information (assuming the subsystem supports this
capability). This implies that subsystems can be “clients” of other subsystems. The
Data Bus process is the only process which connects directly to subsystems; all other
clients connect to subsystems through a connection to the Data Bus.

• Driver: a driver is utilized to implement a vendor specific protocol or an ITS standard
protocol. Drivers communicate to subsystems and the details of the particular protocol
being implemented is limited to the driver (i.e. subsystems are not exposed to the
particulars of a protocol). This approach allows a subsystem to be able to talk to various
vendors by simply developing a driver that “speaks” the protocol of the vendor’s device.
The subsystem “treats” all devices in the same manner independent of protocol.

2.7.1 Interface Control Documents
The architecture utilizes XML ICDs to provide an easily understandable interface to the system.
A general ICD exists which describes the byte ordering of the transactions and how the data is
organized. This ICD also discusses that authenticate, subscribe and retrieve data should be
implemented by all subsystems. The general ICD also outlines XML schema which are used by
the generic library. These include objects, general transaction structure, and XML messages,
requests and responses which are handled at the generic level.
Each subsystem/driver has a unique ICD which describes the communication between a client
and the subsystem and the subsystem and the driver. In addition to outlining the XML schema
for this subsystem, general system behavior is included in the ICD. Startup messages for a
client-subsystem or subsystem-driver connection are shown. Each specific ICD contains two
tables which describe how the schema are used. These tables show the interface that the
subsystem and driver are responsible for implementing—which schemas are sent and received by
either the subsystem or the driver. Another table in the ICD would be used by a client to
determine which types of data updates should be requested.

2.7.2 Data Bus
The Data Bus has two responsibilities. It distributes status updates to clients and routes
commands from clients to subsystems and from subsystems to clients. Data Bus has two ICDs
available, one is for client communication to Data Bus and the other is for creating a provider to
which Data Bus can communicate. Figure 2.9 shows an overview of the Data Bus process.
Commands are routed in both directions, while status is pushed into Data Bus from a provider
and subsequently pushed to the client by Data Bus.

Software Architecture Guidelines

SunGuide-SAG-1.0.0 15

Figure 2.9 - Data Bus Overview

Data Bus was designed to provide a single portal to the system for a client. This allows one
client connection from which status data of all types can be retrieved and a single portal for
sending commands to multiple subsystems as shown in Figure 2.10. If a subsystem must be
moved to a new machine, the only change that must be made is for Data Bus to know where the
process has been moved.

Figure 2.10 - Data Bus Connections
When creating a provider for Data Bus, the configuration file is used to provide information to
Data Bus. This allows Data Bus to be expanded to store new types of status information without
any code changes required. The XML below shows the relevant portions of the configuration
file.

<dataProviders>
 <sb>
 …
 <handlers>…</handlers>
 <subscriptions>
 <stationData/>
 <statusData/>
 <eventData/>
 </subscriptions>
 <statusUpdates>
 <sbStation>

Data Bus
Subsystem

Status
Logger

Data
Provider

Processes

Executive
Handler

Status
Messages

Heartbeat /
Process

Commands

Status

Commands

Client
Application
Processes C o m mands

Stat us

Software Architecture Guidelines

SunGuide-SAG-1.0.0 16

 <addSbResp action="add"/>
 <modifySbResp action="modify"/>
 <deleteSbResp action="delete"/>
 <onlineStatusMsg/>
 <setOnlineStatusMsg/>
 <setOnlineStatusResp/>
 <setStatusResp/>
 <statusResp/>
 </sbStation>
 <sbEvent>
 <barrierEventMsg action="add"/>
 <cancelBarrierEventMsg action="delete"/>
 <acknowledgeEventResp/>
 </sbEvent>
 </statusUpdates>
 <drivers>…</drivers>
 </sb>
 </dataProviders>
Any subsystem listed under the dataProviders tag can provide status updates to Data Bus and
receive commands routed through Data Bus. Data Bus requires the subsystem to have the
following attributes:

• Implement authenticateReq
• Implement retrieveDataReq with a data type of “statusList”. The status list must return

any status values that should be stored in Data Bus.
• Implement a subscribeReq:

o For any data types that will be updated or have items added, the appropriate
subscriptions should be listed in the subscriptions tag of the configuration file.

o For responses or messages which will update or add items to the Data Bus, these
should be listed in the configuration file under the appropriate resource type. In
the example above, two types of data are stored in Data Bus for the subsystem,
sbStation and sbEvent. The actions shown are described in detail in the Data Bus
Subsystem Provider Template ICD.

2.8 Subsystem Development
Creating a new subsystem using the generic library is generally a quick and easy process.
Following the steps outlined below will get you up and running rapidly. Table 2.5 details tools
that developers typically use to provide an efficient development environment.

Table 2.5 - Development Tools
Tool Required? Description

Microsoft Visual Studio 2005 Y The C#.NET integrated development environment

Jetbrains Resharper N A C# refactoring tool used to provide increased
productivity

Microsoft Visual Source Safe N A change management repository

Software Architecture Guidelines

SunGuide-SAG-1.0.0 17

2.8.1 Creating a Project
Create a new Visual Studio project. The easiest method is to create a solution with three
projects, one for the library of functionality, one to create a console application, and one to create
a service. This allows easy debugging during development without the concern that files will be
out of synch with the service project.
Add the ITSGeneric Dynamic Link Library (DLL) reference for the generic library to each
project. If desired for debugging purposes, the actual ITSGeneric project can be added instead of
the DLL. Add a resource file for any subsystem-specific constants that will be used. For an
example of how to use constants, see XmlHandler.cs’s ResourceManager rm member. If this is a
new subsystem, the appropriate status logger event code range should be determined by
consulting the spread sheet containing current used values
(StatusLoggerSubsystemEventCodes.xls).

2.8.2 Steps to Start
The steps below will create a subsystem with limited functionality. Client connections will be
accepted and authenticate requests handled.

2.8.2.1 Extend User class

The base User class contains a username and permission level for the user. Class responsibilities
include creating a user, specifying the privilege names for given privilege values, and providing
an XML node type representing the user object.

• The sub-classed user should contain a resource manager member used for subsystem-
specific constant values. The resource manager is created in the main process and can be
accessed using the static method MainProcess.getCustomizedResourceManager.

• Create an enumeration for privilege names. The value of each member of the
enumeration corresponds to the bit in the permission level of the user.

o Important Note: The order in which the privilege names are defined in the
enumeration must be consistent with the respective permission_id stored in the
subsystem_permissions database table. The first privilege is associated with the
subsystem permission with permission_id = 0. The second privilege is associated
with the subsystem permission where permission_id = 1, etc.

o A subsystem must have at least as many permissions as subscriptions.
 Subscriptions must match up in order with the respective permissions for

that subscription.
 Example: The following permissions {stationData, stationStatus,

userData, configStations, setStatus} may be associated with the
subscriptions {stationData, stationStatus, userUpdates}. The names do not
have to match up, but the order must be the same. When a client
subscribes to data, the subscriptions are ANDed with the client’s
permissions to determine whether the subscription should succeed.

• Define a static integer member, specifying the number of privileges defined in the
privilege enumeration.

• Define a default constructor.
o Initialize the base numberOfPrivileges member to the static integer member
o Retrieve the resource manager using the main process static method.

Software Architecture Guidelines

SunGuide-SAG-1.0.0 18

o If any other constructors are created, ensure that these steps are included or the
default constructor is called.

• Define a public method to generate an XML node type for this user object. Typically, the
method name generateXml is used for this purpose.

o Log any exceptions that occur in this method.

2.8.2.2 Data Management Classes
A subsystem typically uses three data classes to manage ensuring the database and cached data
are kept in synch.

2.8.2.2.1 Data Access
The class used for data access controls all database retrievals and updates, ensuring the database
code is centralized. More code will be added to this class in Section 2.8.4. The steps below are
for creating a preliminary data access class with the ability to retrieve users and passwords.

• Define a private DbUser class member.
• Define a constructor for the class.

o Instantiate the DbUser class member.
• Provide a method for retrieving users.
• Provide a method for retrieving passwords.

2.8.2.2.2 System Data
The system data class controls updates to the cached data used by the system during runtime.
More code will be added to this class in Section 2.8.4. The steps below are for creating a
preliminary system data class with the ability to retrieve users and passwords.

• Define private class members for a list of users and passwords.
• Define a constructor for the class.

o Instantiate the class members.
• Provide a method for retrieving users.
• Provide a method for retrieving passwords.

2.8.2.2.3 Data Manager
The data manager class is responsible for keeping the database and cached data synchronized.
The class contains member variables for the data access and system data classes. Updates to the
database should be performed and checked before cached data is updated. The steps below are
for creating a preliminary class that can retrieve and update users and passwords. More code
will be added to this class in Section 2.8.4.

• Define private member variables for the subsystem’s data access and system data class
objects.

• Define a constructor.
o Initialize the subsystem’s system data and data access classes.

• Implement the updateSystemData() method that will refresh locally cached data with
current database data. This method is called on startup and whenever an
updateSystemDataMsg is received.

o Reset the system data users and passwords from the data access class.

Software Architecture Guidelines

SunGuide-SAG-1.0.0 19

2.8.2.3 Main Process
The main process contains startup methods for the subsystem and other methods for retrieving
data.

• Extends SubsystemMain to create a main process for this subsystem.
• Define private member variables.

o Define a data manager
• Define a constructor with a parameter of a string array (for the command line arguments).

o Call the base class constructor with the string array.
o Initialize the data manager class member.
o Implement all abstract functions including the following:

 runLoop
• Handle subsystem-specific startup procedures.
• Call the base method.
• Set startup completed flag (until this flag is set, no XML will be

processed by the subsystem).
 setDataMgr()

• Verify the data manager is the appropriate class type.
• Set the data manager class member.

 getDataMgr()—return subsystem-specific data manager member.
 createCustomizedResourceManager()

• Create the resource manager for the process.
• Ensure it was created correctly by retrieving a value. Call

shutDown() after logging a message if cannot retrieve the value.
 updateSystemData()

• Invoke the data manager’s updateSystemData method.
• Update users and passwords members via the data manager

member.
• Invoke the security controller member’s updateUsers method,

sending the updated user and password information.
• If the subsystem uses devices, instantiate the statusMgr member.

The status manager tracks the communication errors for devices.
 Provide schema location information for subsystem-specific requests,

messages, and responses.
• Add a method to setup the base schema location reference and

store it as a member variable.
• Override getReqSchemaLocation(), using the base schema location

member to set the subsystem-specific requests schema location.
• Override getRespSchemaLocation(), using the base schema

location member to set the subsystem-specific responses schema
location.

• Override getMsgSchemaLocation(), using the base schema
location member to set the subsystem-specific messages schema
location.

Software Architecture Guidelines

SunGuide-SAG-1.0.0 20

 instantiateSecurityController() sets the users and passwords stored by the
process.

 driverDisconnect() to process steps that need to be taken when a driver is
no longer connected. In some instances, no actions are necessary.

• Send change of device state messages to the client.
• Stop polling or other processing.

 driverReconnect() to process steps that need to be taken when a driver
reconnects to the system. Again, in some instances no actions are
necessary.

• Add devices to specific drivers.
• Restart polling or other processing.

 If devices are used by the subsystem, send XML messages for online
status changes to the appropriate driver(s) and process add/remove devices
from driver as necessary.

• addDevicesToDriver() to add one or more devices to the specified
drivers.

• removeDevicesFromDriver() to remove all devices from the
drivers.

• If using the status manager, override sendOnlineStatusMsg(). This
method is used by the status manager to send online status
messages to subscribed clients when a device changes operational
status.

 initialize() to add the supported ICD versions before calling the base
initialize().

 getProviderType() to return the appropriate string value for the
subsystem’s provider type.

2.8.2.4 Initial XML Handlers
The following steps will create handlers for subscribing and retrieving initial data (users only).
Once these are complete, other handlers may be added to perform additional functionality.

• Extend the SubsystemHandler class to create an abstract class for this subsystem.
o This class will be extended by the other subsystem-specific handlers.
o Initialize subsystem-specific members.

 Subsystem-specific main process, data manager, customized resource
manager, etc.

 Provide helpful member variables for retrieving data.
• Storing request codes, error codes, and response codes, mapping

request/response names to appropriate code values used for
logging and debugging purposes.

• Define a hash table mapping request names to associated response
names.

o Provides common subsystem-specific functionality used by the other subsystem-
specific handlers.

 Can define methods to process sending requests down to the driver.
 Base handler constructor should not assign any types of requests,

messages, and responses supported.

Software Architecture Guidelines

SunGuide-SAG-1.0.0 21

• Extended subsystem-specific handlers—these steps should be followed for each handler
that is created.

o Each subsystem-specific handler should extend the base subsystem handler.
o Handler constructors.

 Assign the types of requests, responses, and messages supported by the
handler by setting the requestTypesHandled, responseTypesHandled and
messageTypesHandled as appropriate.

 Populate base subsystem handler hash table members.
• Response names hash table member to map the responses names

that correspond to the request names supported by the handler.
• Request codes hash table member to map the request codes that

correspond to the request name supported by the handler.
• Response codes hash table member to map the response codes that

correspond to the response name supported by the handler.
• Error codes hash table member to map the error codes that

correspond to the request name supported by the handler.
o Override methods—each of these methods should contain a try-catch block

surrounding all XML handling code. This ensures that every request receives a
response, even if it is an error response.

 handleXmlRequest
• Should call isValid to ensure if validation is on, the XML received

is valid against the schema.
o Use the SecurityController’s userHavePermission

method.
o Return a response if error.

• Should check whether the client has permission to perform the
request. Return a response if error.

• If creating a response, call validateGeneratedXml prior to sending
the response to the client.

 handleXmlResponse—used to handle responses received from drivers.
 handleXmlMessage—used to handle messages from either clients or

drivers.

2.8.2.5 Subscribe Handler
The subscribe handler should be created as discussed in 2.8.2.4. The request types handled
should only contain “subscribeReq”. The security controller’s updateUserSubscription
method should be used to determine which subscriptions the user has permission to set. When
returning a response, only the successful subscriptions should be returned.

2.8.2.6 Retrieve Data Handler
The retrieve data handler should be created as discussed in 2.8.2.4. The subsystem should
retrieve, at a minimum, user data and a status list if it is a Data Bus provider. If a user requests
user data but a permission prevents them from retrieving all user data, the subsystem should
return the permissions for the user who requested the data.

Software Architecture Guidelines

SunGuide-SAG-1.0.0 22

2.8.3 Running the Subsystem
After completing the above steps, the subsystem can be started. The command line parameters
are the name of the process, the configuration file location and an optional “-d” debug mode flag.
The best method of debugging system startup is to have the logLevel flag in the configuration
file set to “slDetail” and the –d command line flag set. Then, after starting the process, view the
log file to see detailed messages of the startup sequence of events. If any errors occur, these will
be logged.
Prior to logging into the subsystem, the following steps must be performed in the database:

• Add the subsystem name to the SUBSYSTEMS table.
• Add the appropriate permissions to the SUBSYSTEM_PERMISSIONS table.
• Add permissions for a user to the USER_PERMISSIONS table.

Once the process has started successfully, use a client tester program to send an authenticate
request to the subsystem with the user whose permissions were added above. Once successfully
authenticated, retrieve the user data. The data should contain permissions for the user.

2.8.4 Finishing the Subsystem
The rest of the steps for creating a subsystem will be specific to the subsystem being created.
The following list contains details to consider.

• Examine what schema requests/responses/messages your subsystem must handle. Then
try to combine schemas together to create a handler. For example, a configuration handler
can be created that handles add, modify and delete requests and responses.

• Add appropriate classes for objects needed by the system.
o If accessing from the database, extend DbItem for database connectivity.
o Data objects should contain a constructor which takes an XmlNode and a method

for generating XML from the object.
o Modify the data management classes to retrieve and update the database objects.

2.9 Driver Development
Creating a new driver using the generic library is generally a quick and easy process. Following
the steps outlined below will get you up and running rapidly. Table 2.5 details tools that
developers typically use to provide an efficient development environment.

2.9.1 Creating a Project
Create a new Visual Studio project. The easiest method is to create a solution with three
projects, one for the library of functionality, one to create a console application, and one to create
a service. This allows easy debugging during development without the concern that files will be
out of synch with the service project.
Add the ITSGeneric DLL reference for the generic library to each project. If desired for
debugging purposes, the actual ITSGeneric project can be added instead of the DLL. Add a
resource file for any subsystem-specific constants that will be used. For an example of how to
use constants, see XmlHandler.cs’s ResourceManager rm member. If this is a new driver, the
appropriate status logger event code range should be determined by consulting the spread sheet
containing current used values (StatusLoggerSubsystemEventCodes.xls).

Software Architecture Guidelines

SunGuide-SAG-1.0.0 23

2.9.2 Steps to Start
Creating a driver is similar to creating a subsystem, with a few differences. There are no users in
a driver, no database access, and no subscribe or retrieve data handlers. Most of the functionality
is contained within the command classes.

2.9.2.1 Data Management
Other than data retrieved from the configuration file, a driver typically receives its data from the
associated subsystem. Therefore only a system data class is needed to store cached data.

• Add appropriate class objects for driver-specific items.
o Define a constructor that initializes the class instance from an XML node

containing the item data.
o Define a constructor that initializes the class from parameter appropriate item-

specific values.
o Define a method to generate the XML node representing the item.

• Create a system data class to store driver-specific cached data.
o Define a constructor, initializing driver-specific cached data.
o Provide necessary members/methods to manage pertinent driver-specific cached

data.
o Provide getter methods for appropriate driver-specific items.
o Define a method to reinitialize driver cache. This method should be called when

the client process disconnects from the driver.

2.9.2.2 Main Process
Either the ExtGenCommDriverMain or GenCommDriverMain class should be extended to create
a new driver. The ExtGenCommDriverMain allows asynchronous device communication while
GenCommDriverMain performs communications synchronously.

• Define a system data member.
• Define a default constructor.
• Implement abstract and virtual functions.

o instantiateDataMgr() to initialize the system data member responsible for caching
driver data.

o runLoop()
 Handle driver-specific startup procedures.
 Set the provider type.
 Instantiate the member class responsible for managing cached driver data.
 Call the base class runLoop().

o getDataMgr() to return the class member responsible for manager cached driver
data.

o createCustomizedResourceManager() to open the file for retrieving constants.
o Provide schema location information for subsystem-specific requests, messages,

and responses.
 Add a method to setup the base schema location reference and store it as a

member variable.
 Override getReqSchemaLocation(), using the base schema location

member to set the subsystem-specific requests schema location.

Software Architecture Guidelines

SunGuide-SAG-1.0.0 24

 Override getRespSchemaLocation(), using the base schema location
member to set the subsystem-specific responses schema location.

 Override getMsgSchemaLocation(), using the base schema location
member to set the subsystem-specific messages schema location.

o clientDisconnect() to process steps that need to be taken when a client is no longer
connected such as clearing driver table information and reinitializing the driver
cache.

o initialize() to add the supported ICD versions before calling the base.initialize().
o getProviderType() to return the appropriate string value.

2.9.2.3 Handlers
See Section 2.8.2.4 for information on creating handlers for the driver. The only difference is
that DriverHandler should be overridden rather than the SubsystemHandler.

2.9.2.4 Creating Commands
The driver device manager handles collecting data packets until a command packet is complete.
A command should be created for each type of communication with a device (i.e., poll request,
reset command).

• Define driver command classes for each type of device command supported by the driver,
extending the DriverCommand class.

o Override the following methods:
 getCommandName()
 receiveResponse()
 executeNextStep()
 callSuccessfulResponse()
 callUnsuccessfuleResponse()
 handleCommandTimeout()

o When adding equipment to the driver’s local cache, also add the appropriate
address and protocol information to DriverMain’s member tables, using methods
addAddressToTable() and addProtocolToTable().

• Instantiate the appropriate driver-specific command for each command request sent to the
driver from within the appropriate driver-specific XML handler, and send it to the driver
device manager for processing.

o Retrieve appropriate address and protocol information from the DriverMain’s
member tables, using methods getAddressFromTable() and
getProtocolFromTable().

• When instantiating the command, these protocol and address items are listed as
parameters to the command, as well as the calling XML handler object.

o To send the command down to the driver device manager, call
sendDriverCommandToDeviceMgr().

o XML handlers instantiating driver commands must include methods invoked by
the driver command to send successful/unsuccessful responses to the client. The
names of these methods are defined in the driver-specific command classes’
callSuccessfulResponse() and callUnsuccessfulResponse() methods.

Software Architecture Guidelines

SunGuide-SAG-1.0.0 25

2.9.3 Running The Driver
After completing the above steps, the driver can be started. The command line parameters are
the name of the process, the configuration file location, the name of the subsystem for this driver,
and an optional “-d” debug mode flag. The best method of debugging system startup is to have
the debugMode flag in the configuration file set to “slDetail”. Then, after starting the process,
view the log file to see detailed messages of the startup sequence of events. If any errors occur,
these will be logged.

Software Architecture Guidelines

SunGuide-SAG-1.0.0 26

3.0 Notes
None.

