
SunGuide®:

Software Architecture Guidelines
SunGuide-SAG-2.0

Prepared for:

Florida Department of Transportation
Traffic Engineering and Operations Office
605 Suwannee Street, M.S. 90
Tallahassee, Florida 32399-0450
(850) 410-5600

December 5, 2012

Software Architecture Guidelines

SunGuide-SAG-2.0 i

Document Control Panel

File Name: SunGuide-SAG.doc

File Location: SunGuide CM Repository

CDRL: n/a

Name Initial Date

Created By: Steve Dellenback, SwRI SWD 11/03/06

Lynne A. Randolph, SwRI LAR 11/03/06

Reviewed By: Steve Dellenback, SwRI SWD 11/30/06

Steve Dellenback, SwRI SWD 1/17/07

Steve Dellenback, SwRI SWD 2/16/07

Roger Strain, SwRI RLS 12/4/12

Modified By: Steve Dellenback, SwRI SWD 1/17/07

Lynne Randolph LAR 1/21/07

Tucker Brown TJB 12/02/12

Completed By:

Software Architecture Guidelines

SunGuide-SAG-2.0 ii

Table of Contents

Page
List of Tables .. iv
List of Figures .. iv
List of Acronyms ... v
Revision History .. vii

1.0 Scope .. 1
1.1 Document Identification .. 1
1.2 Project Overview .. 1
1.3 Related Documents ... 1
1.4 Contacts ... 2

2.0 Creating SunGuide® Software .. 3

2.1 Configuration File .. 4
2.2 Status Logger ... 6
2.3 Service and Heartbeat ... 7
2.4 XML Interface ... 8
2.5 User Permissions .. 10
2.6 Database Access ... 12
2.7 Interfaces .. 12

2.7.1 Interface Control Documents ... 12
2.7.2 Data Bus ... 13

2.8 DataLibrary ... 15
2.8.1 Overall Structure of the DataLibrary Project 15
2.8.2 Objects .. 15
2.8.3 Messages .. 16
2.8.4 Requests ... 16
2.8.5 Responses ... 16

2.9 Subsystem Development .. 17
2.9.1 Creating a Project ... 17
2.9.2 Steps to Start .. 17
2.9.3 Running the Subsystem .. 22
2.9.4 Finishing the Subsystem .. 22

2.10 Driver Development ... 22
2.10.1 Creating a Project ... 22
2.10.2 Steps to Start .. 23
2.10.3 Running The Driver ... 25

3.0 Notes ... 26

Software Architecture Guidelines

SunGuide-SAG-2.0 iii

List of Tables

Page
Table 2-1 - Language Specific Development Tools ... 3
Table 2-2 - Sample Configuration File Values ... 6
Table 2-3 - Sample Log Messages .. 7
Table 2-4 - Login Error Messages .. 11
Table 2-5 - Development Tools .. 17

List of Figures

Page
Figure 1-1 - High-Level Architectural Concept .. 1
Figure 2-1 - Generic Capabilities .. 4
Figure 2-2 - Status Logger .. 7
Figure 2-3 - Executive Handler ... 8
Figure 2-4 - XML Interface Classes ... 9
Figure 2-5 - Generic Handlers .. 9
Figure 2-6 - XML Handling .. 10
Figure 2-7 - User Permission Tables .. 11
Figure 2-8 - Database Classes ... 12
Figure 2-9 - Data Bus Overview ... 13
Figure 2-10 - Data Bus Connections ... 14
Figure 2-11 - Registering a request with the subsystem ... 21

Software Architecture Guidelines

SunGuide-SAG-2.0 iv

List of Acronyms

C2CCenter-To-Center

DLLDynamic Link Library
DMS………………...Dynamic Message Sign
DOM………………...Document Object Model
EHExecutive Handler
FDOTFlorida Department of Transportation

ICDInterface Control Document

IDE………………….Integrated Development Environment

IM……………………Incident Management

ITNInvitation to Negotiate

ITS..............................Intelligent Transportation Systems

RMS………………...Ramp Metering Subsystem

SAG............................Software Architecture Guidelines

SwRISouthwest Research Institute®

XIMXML Interface Manager

XMLExtensible Markup Language

Software Architecture Guidelines

SunGuide-SAG-2.0 v

Revision History

Revision Date Changes

1.0.0-Draft November 30, 2006 Initial Release.

1.0.1-Draft January 17, 2007 Updated with comments from FDOT CO

2.0 November 2, 2012 Updated to current standards

Software Architecture Guidelines

SunGuide-SAG-2.0 1

1.0 Scope

1.1 Document Identification

This document serves as the Software Architecture Guidelines (SAG) for the SunGuide software.

1.2 Project Overview

The Florida Department of Transportation (FDOT) SunGuide® Support, Maintenance, and
Development Contract, contract number BDQ69, addresses the necessity of supporting,
maintaining, and performing enhancement development to the SunGuide software. The
SunGuide software was developed by FDOT through a contract from October 2003 and ongoing
as of 2012. The SunGuide software is a set of intelligent transportation systems (ITS) software
that allows control of roadway devices as well as information exchange across a variety of
transportation agencies; it is deployed throughout the state of Florida. The SunGuide software is
based on ITS software available from the state of Texas with significant customization and
development of new software modules to meet FDOT’s needs. Figure 1 provides a graphical
view of the SunGuide software.

Figure 1-1 - High-Level Architectural Concept

The SunGuide software development effort began in October 2003; several major releases have
been developed and this document addresses an incremental update of the most recent release.
After development, the software will be deployed to a number of regional and local
transportation management centers throughout Florida and support activities will be performed.

1.3 Related Documents

The following documents were used to develop this document:

 Statewide Transportation Management Center Software Library System: Scope of
Services. Florida Department of Transportation, September 23, 2003. Contract BD826.

Software Architecture Guidelines

SunGuide-SAG-2.0 2

 These documents are available from the document library on the SunGuide project web
site at http://sunguidesoftware.com.

1.4 Contacts

The following are contact persons for the SunGuide software project:

 Elizabeth Birriel, ITS Section, Traffic Engineering and Operations Office,
elizabeth.birriel@dot.state.fl.us, 850-410-5606

 Arun Krishnamurthy, FDOT SunGuide Project Manager,
arun.krishnamurthy@dot.state.fl.us, 850-410-5615

 Clay Packard, Atkins Project Manager,
clay.packard@dot.state.fl.us, 850-410-5623

 David Chang, Atkins Project Advisor,
David.Chang@dot.state.fl.us, 850-410-5622

 Robert Heller, SwRI Project Manager,
rheller@swri.org, 210-522-3824

 Tucker Brown, SwRI Software Project Manager,
tbrown@swri.com, 210-522-3035

Software Architecture Guidelines

SunGuide-SAG-2.0 3

2.0 Creating SunGuide® Software

The majority of processes incorporated in the SunGuide architecture were developed using
C#.NET. As many subsystems and drivers were included in the initial release, a generic
framework was developed to allow base functionality to be provided. This allowed subsystems
and drivers to utilize the same code for functionality that was required of all processes. The
library provides classes and methods for logging messages to the Status Logger, performing
communication with the Executive Handler (EH), connecting to an Oracle and SQL Server
database, and other common tasks.

Some of the processes, including the Dynamic Message Sign (DMS) processes, and the Ramp
Metering Subsystem (RMS) were developed using the Java coding language. Java was used
where an existing code base already existed for a particular subsystem. Table 2-1 Error!
Reference source not found.shows the various tools used during development for both
languages.

Table 2-1 - Language Specific Development Tools

Tool C#.NET Java

Compiler Visual Studio C# Sun Java Compiler

Integrated Development
Environment (IDE)

Visual Studio .NET 2010 Intellij IDEA

Refactoring Productivity Tool Jetbrains Resharper Included in the IDE

Configuration Management AccuRev AccuRev

XML Schema development XML Spy XML Spy

The SunGuide architecture utilizes Extensible Markup Language (XML) ICDs to provide an
easily understandable interface to the system. Figure 2-1 shows an overview of the capabilities
included in the generic library. The shaded circles represent functionality that exists in both the
generic subsystem and driver. The non-shaded circles contain functionality utilized solely by the
generic subsystem. The following sections detail a summary of each functional area.

Software Architecture Guidelines

SunGuide-SAG-2.0 4

Status
Logger

Database
Access

Configuration
File

User
Permissions

Service and
Heartbeat

XML
Interface

Main Process

Figure 2-1 - Generic Capabilities

The benefits of creating software using the generic library are numerous.

 Saves time and effort during development; a working subsystem shell can be created in
several hours.

 Handler framework allows new functionality to be self-contained.

 Basic functionality is provided and uses the same format as other systems. If a bug is
found in common functionality, fixing it once fixes it everywhere. Reduces risk of
forgetting basic functionality.

 Reduces learning curve for maintaining other processes. Once a developer understands
how the framework functions, maintaining another process becomes much easier.

2.1 Configuration File

SunGuide subsystems and drivers extract information for startup, communication with other
processes, and system parameters from an XML configuration file. This file is located on a
shared drive and the same file is used for all SunGuide processes. The Data Bus utilizes this
configuration file to determine what providers are available and what type of data will be stored
and updated by each provider.

Both the generic subsystem and the driver contain the necessary code for reading values from the
configuration file. These values include the common connectivity information such as host and
port as well as other process specific values. The XML shown below is a configuration file entry
for a sample subsystem. The subsystem name in this instance is “sb”. One of the command line
parameters for a subsystem is the name of the process. This is used to retrieve the appropriate
configuration file values for that process. A driver has an additional parameter for the subsystem
to which it belongs, allowing it to be uniquely identified.

<sb>
 <host>129.162.101.113</host>

Software Architecture Guidelines

SunGuide-SAG-2.0 5

 <port>40008</port>
 <icdVersion>1.0</icdVersion>
 <maxConnections>20</maxConnections>
 <logLevel>slInfo</logLevel>
 <validation>false</validation>
 <commTolerance>3</commTolerance>
 <providerType>sbStation</providerType>

<customTag>myValue</customTag>
 <handlers>
 <gov.its.sb.xml.SbRetrieveDataHandler/>
 <gov.its.sb.xml.SbSubscribeHandler/>
 <gov.its.sb.xml.SbStatusHandler/>
 <gov.its.sb.xml.SbBarrierEventHandler/>
 <gov.its.sb.xml.SbConfigurationHandler/>
 <gov.its.sb.xml.SbControlHandler/>
 </handlers>
 <subscriptions>
 …
 </subscriptions>
 <statusUpdates>
 …
 </statusUpdates>
 <drivers>
 <driver>
 <identifier>SBDriver</identifier>
 <host>129.162.101.113</host>
 <port>40088</port>
 <logLevel>slInfo</logLevel>
 <validation>false</validation>
 <icdVersion>1.0</icdVersion>
 <maxConnections>10</maxConnections>
 <packetTimeout>5000</packetTimeout>
 <packetRetries>1</packetRetries>
 <pulseRate>30</pulseRate>
 <handlers>
 <gov.its.sb.driver.xml.SbDriverConfigHandler/>
 <gov.its.sb.driver.xml.SbDriverControlHandler/>
 <gov.its.sb.driver.xml.SbDriverUpdateHandler/>
 </handlers>
 </driver>
 </drivers>
 </sb>

Table 2-2Error! Reference source not found. shows a brief description of the various entries
and how they are handled.

Software Architecture Guidelines

SunGuide-SAG-2.0 6

Table 2-2 - Sample Configuration File Values

Config File Tags Handling by Generic

host
port
maxConnections

Used to create the listener socket. This is the socket to which
clients will connect.

icdVersion Saved and used to validate that XML being received is the
appropriate ICD version.

logLevel Determines the log level of the process used on startup. This
may be changed during runtime by the EH.

validation Whether XML should be validated against the schema. This
is typically used during development only as validation slows
down processing time of XML.

commTolerance Used for device related subsystems. This determines the
number of consecutive communications which must fail
before the device is moved from Error to Failed status.

providerType Used by Data Bus to determine what type of provider this
subsystem is.

handlers The list of handlers are XML processing classes that should
be instantiated at runtime.

subscriptions
statusUpdates

These are used by Data Bus and will be explained in Section
2.7.2. Generic does not read these configuration values.

packetTimeout Used by the driver to determine how long to wait for a
response from a device before timing out.

packetRetries The number of times a packet will be retried before failing.

pulseRate How frequently a device should be polled. This value may
only be a default, depending on the particular driver.

The configuration file portion of the generic library may also be used to read custom tags from
the file. An example of this in the XML above would be the tag, <customTag>, which may be
read and used by a process utilizing the generic library.

2.2 Status Logger

The status logging portion of the generic library provides logging functionality. First, the
connection to status logger is made using the status logger configuration values. Next, the status
logger component uses the logLevel read from the configuration file to determine what level of
logging is required. For example, if the logLevel is slInfo, no debug or detailed messages will be
logged. If the EH is later used to change the log level to slDetail, the status logger component
will accordingly adjust the level of detail logged. As shown in Figure 2-2, the subsystems use a
status logger client library for communication with the service.

Software Architecture Guidelines

SunGuide-SAG-2.0 7

Figure 2-2 - Status Logger

Alternatively, if the status logger service cannot be reached, the status logger component will log
to a file in the directory from which the process is running. If the status logger service later
begins functioning, the logging will be moved to the process at that time. Example code for
logging a message using the generic framework is described in Table 2-3.

Table 2-3 - Sample Log Messages

Sample Message Field Description

MainProcess.logMessage(The static method for
logging a message, part of
the main process.

StatusLogger.level.slDebug, What type of message is to
be logged (slError, slWarn,
slInfo, slDebug, slDetail)

(int)crm.GetObject("ADD_MSG_CODE"), The numeric code for this
message, should be a
constant, not hard coded.

GetType().Name, The name of the class
logging the message.

MethodInfo.GetCurrentMethod().Name, The method name from which
the log message is
initiated.

"Adding message to queue: " + device.getId() +
", msg: " + msg.getMsgText());

The actual message to be
logged, should contain as
much detail as needed.

2.3 Service and Heartbeat

The generic library contains functionality for communicating with the EH server as shown in
Figure 2-3. The EH viewer may be used to send commands to processes and view the current
status. The generic library is responsible for sending heartbeat messages to the server at the

Software Architecture Guidelines

SunGuide-SAG-2.0 8

appropriate interval. This communication is transparent to any process extending the generic
framework.

Figure 2-3 - Executive Handler

In addition to status, the EH viewer may be used to send commands to processes. These
commands include changing the log level, starting and stopping the process. The generic library
contains methods to perform each of those actions when requested by the EH viewer.

2.4 XML Interface

The XML interface portion of the generic library contains functionality for sending, receiving,
and handling XML requests, messages, and responses. This component includes the generic
main process which is responsible for creating the XML interface, XML handlers, and the
communication classes. Figure 2-4 shows the classes which compose this component.

Software Architecture Guidelines

SunGuide-SAG-2.0 9

Figure 2-4 - XML Interface Classes

The generic process contains several handlers shown in Figure 2-5 which implementing
processes utilize. The handlers provide the following functionality:

 SetPropertiesHandler—handles the setSystemPropertiesReq, which allows modifying
the log level and whether XML validation should be used.

 UpdateSystemDataHandler—handles the updateSystemDataMsg, allowing a process to
update cached data from the database.

 ClientDisconnectHandler—handles the clientDisconnectMsg, allowing a process to
properly remove a connected client.

 DefaultHandler—provides a generic error response if a message or request is received
for which no handler is registered.

 AuthenticateHandler—allows subsystems to handle an authenticateReq and log users
into the system. A subsystem must only implement a User class to receive this
functionality.

Figure 2-5 - Generic Handlers

Software Architecture Guidelines

SunGuide-SAG-2.0 10

One of the primary functions provided by the XML interface is handling XML requests,
messages and responses. Figure 2-6 shows how requests are handled by the XML Interface
Manager (XIM). When a client sends a request, the XIM checks which handler has registered to
handle the request. The handler determines whether this is a request to be forwarded to a driver
or can be handled immediately. The blue lines show the path when a request is sent to the driver.
Once a response is received from the driver, the handler sends it to the appropriate client or
clients. The red lines show the path when the request can be handled immediately and a
response returned to the client.

XML
Interface
Manager

Handler

Sends
XML

Request

Returns request
or response

Forwards to
appropriate

handler

Client

Send Request
or Response Database

Device
Driver

Returns Response

Stored Data

Returns
Response

Forwards to
appropriate

handler

Returns response

Returns Response

Sends request
to device driver

Figure 2-6 - XML Handling

All communications are asynchronous, permitting multiple requests to be handled without
requiring the system to wait until a response is generated. Asynchronous communication is
especially important for requests which cannot be completed immediately, allowing the process
to continue to be responsive to clients.

2.5 User Permissions

For subsystems created using the generic library, a user permission component is included. This
component utilizes the AdoDbUser class that is part of Database Access. When creating the
AdoDbUser, the subsystem specifies the subsystem name for which permissions and users
should be retrieved. The database tables (subsystems, subsystem_permissions, users and
user_permissions) shown in Figure 2-7 are used to store the permissions for the various
subsystems.

Software Architecture Guidelines

SunGuide-SAG-2.0 11

Figure 2-7 - User Permission Tables

When retrieving users from the AdoDbUser, only users with permissions for that subsystem will
be retrieved. Once the users are obtained, a Security Controller is created with the list of users.
The authenticate handler contained within the generic framework uses this Security Controller
when an authenticate request is received. If the user can be logged into the Security Controller, a
user with the appropriate permissions is used to verify permissions for subsequent requests. If
the user cannot be logged in, an appropriate error response is returned to the requestor. The
possible error messages are shown in Table 2-4.

Table 2-4 - Login Error Messages

Error Message Description
"Bad user name or password." The user does not exist or the

password is incorrect.
"No user name or password provided." Tried to login with an empty user name

or password.
"User does not have system access
permission"

Some subsystems have a “system access”
permission required to login, and this
user does not have that permission.

"No users exist with permissions to
this subsystem."

This is a special error message,
useful for new subsystems for which
administrators might not have assigned
permissions.

"There was an error logging out the
user which was already connected."

The user was already logged in and
could not be logged out.

Software Architecture Guidelines

SunGuide-SAG-2.0 12

2.6 Database Access

A library of database classes contained in the generic library allows database communication to
be abstracted. First, as discussed in the user permissions section, the AdoDbUser retrieves users
with subsystem permissions for validating logins. A AdoDbItem class exists which handles
connecting to the database and performing the appropriate actions. Each class that handles
database items should extend AdoDbItem to gain this functionality. The classes used by the
Database Access component are shown in Figure 2-8.

Figure 2-8 - Database Classes

The database access component includes helper classes for database methods. The
AdoDatabaseCommand class handles ensuring a database connection exists, throwing exceptions
if errors occur, and reconnecting to the database if needed. The AdoCommandList class allows a
list of database commands to be executed using a transaction. Then, if any statements fail, the
entire list of commands will be rolled back. When executing any commands, the connection
must always be closed before returning from the method. This allows the database cursors to be
released. If commands are not closed properly, the database may throw a “Too many open
cursors” error. The sample code below shows the proper method for executing and closing a
command:
 updateOpstatusCommand.setParameter("1", opStatus);
 updateOpstatusCommand.setParameter("2", harId);
 int numRows = updateOpstatusCommand.executeCommand();
 updateOpstatusCommand.closeConnection();

2.7 Interfaces

The following sections describe the use of SunGuide interfaces.

2.7.1 Interface Control Documents

The architecture utilizes XML ICDs to provide an easily understandable interface to the system.
A general ICD exists which describes the byte ordering of the transactions and how the data is
organized. This ICD also discusses that authenticate, subscribe and retrieve data should be
implemented by all subsystems. The general ICD also outlines XML schema which are used by

Software Architecture Guidelines

SunGuide-SAG-2.0 13

the generic library. These include objects, general transaction structure, and XML messages,
requests and responses which are handled at the generic level.

Each subsystem/driver has a unique ICD which describes the communication between a client
and the subsystem and the subsystem and the driver. In addition to outlining the XML schema
for this subsystem, general system behavior is included in the ICD. Startup messages for a
client-subsystem or subsystem-driver connection are shown. Each specific ICD contains two
tables which describe how the schemas are used. These tables show the interface that the
subsystem and driver are responsible for implementing—which schemas are sent and received by
either the subsystem or the driver. Another table in the ICD would be used by a client to
determine which types of data updates should be requested.

2.7.2 Data Bus

The Data Bus has two responsibilities. It distributes status updates to clients and routes
commands from clients to subsystems and from subsystems to clients. Data Bus has two ICDs
available, one is for client communication to Data Bus and the other is for creating a provider to
which Data Bus can communicate. Figure 2-9 shows an overview of the Data Bus process.
Commands are routed in both directions, while status is pushed into Data Bus from a provider
and subsequently pushed to the client by Data Bus.

Figure 2-9 - Data Bus Overview

Data Bus was designed to provide a single portal to the system for a client. This allows one
client connection from which status data of all types can be retrieved and a single portal for
sending commands to multiple subsystems as shown in Figure 2-10. If a subsystem must be
moved to a new machine, the only change that must be made is for Data Bus to know where the
process has been moved.

Data Bus
Subsystem

Status
Logger

Data
Provider

Processes

Executive
Handler

Status
Messages

Heartbeat /
Process

Commands

Status

Commands

Client
Application
Processes Co mm ands

S tatus

Software Architecture Guidelines

SunGuide-SAG-2.0 14

Figure 2-10 - Data Bus Connections

When creating a provider for Data Bus, the configuration file is used to provide information to
Data Bus. This allows Data Bus to be expanded to store new types of status information without
any code changes required. The XML below shows the relevant portions of the configuration
file.

<dataProviders>
 <sb>
 …
 <handlers>…</handlers>
 <subscriptions>
 <stationData/>
 <statusData/>
 <eventData/>
 </subscriptions>
 <statusUpdates>
 <sbStation>
 <addSbResp action="add"/>
 <modifySbResp action="modify"/>
 <deleteSbResp action="delete"/>
 <onlineStatusMsg/>
 <setOnlineStatusMsg/>
 <setOnlineStatusResp/>
 <setStatusResp/>
 <statusResp/>
 </sbStation>
 <sbEvent>
 <barrierEventMsg action="add"/>
 <cancelBarrierEventMsg action="delete"/>
 <acknowledgeEventResp/>
 </sbEvent>
 </statusUpdates>
 <drivers>…</drivers>

Software Architecture Guidelines

SunGuide-SAG-2.0 15

 </sb>
 </dataProviders>

Any subsystem listed under the dataProviders tag can provide status updates to Data Bus and
receive commands routed through Data Bus. Data Bus requires the subsystem to have the
following attributes:

 Implement authenticateReq
 Implement retrieveDataReq with a data type of “statusList”. The status list must return

any status values that should be stored in Data Bus.
 Implement a subscribeReq:

o For any data types that will be updated or have items added, the appropriate
subscriptions should be listed in the subscriptions tag of the configuration file.

 For responses or messages which will update or add items to the Data Bus, these
should be listed in the configuration file under the appropriate resource type. In
the example above, two types of data are stored in Data Bus for the subsystem,
sbStation and sbEvent. The actions shown are described in detail in the Data Bus
Subsystem Provider Template ICD.

2.8 DataLibrary

As new subsystems are added to SunGuide and old subsystems are updated, DataLibrary is being
used to manage XML serialization. To ensure consistent operation across the system, these
objects should be created using the approach described below.

2.8.1 Overall Structure of the DataLibrary Project

The DataLibrary project should contain a top level folder for each included subsystem. These
folders typically should match the folders in the project XSD schemas. Each folder will typically
contain individual folders for schema objects, messages, requests, and responses, again based on
the XSD schema folder structure. Responses typically include a response-specific data object;
these should be segregated into a folder under the responses folder. (Some subsystems have this
folder under objects; this is acceptable, but not preferred.)

2.8.2 Objects

All DataLibrary objects should be subclassed from the XmlBase object (or one of its subclasses).
This provides a variety of functions which can be used by and on DataLibrary objects. These
objects should each represent a single XSD object, such as a Har, HarConfig, HarStatus,
Privilege set, etc. Each object should be placed in a file in the subsystem’s objects folder.
Each XML child element of the object should be represented as a public property with a get and
set method. The properties typically have the same name as the element, only with an initial
capital. These properties should be tagged using XML Serialization attributes to reflect their
XSD naming, and in some cases content. A full discussion of XML Serialization attributes is
beyond the scope of this document. Information on MSDN may be found at the following
locations, among numerous others:
http://msdn.microsoft.com/en-us/library/83y7df3e%28v=vs.100%29.aspx
http://msdn.microsoft.com/en-us/library/2baksw0z%28v=vs.100%29.aspx

Software Architecture Guidelines

SunGuide-SAG-2.0 16

2.8.2.1 Nullable Primitive Data Properties

By default, the serializer will include an object such as a nullable integer (int?) even if it has
no value. Typically, SunGuide schemas are designed so that if the field is not populated, the
element should not be present. To simplify developing these type of fields, the
[AutoOptionals] attribute may be applied to the class. When using this attribute, a special
code region named AutoGeneratedXml must also be included in the file. A preprocessor
application will run before a build session to generate the appropriate supplemental properties for
any nullable fields to ensure the XML serializer works as desired.

2.8.3 Messages

XML messages for a subsystem should be placed in the messages folder of the subsystem. Each
message should subclass from a subsystem-specific message base class, which itself extends the
Message class. This subsystem-specific base class should implement the ProviderXsdFolder
property to provide the folder name under which subsystem schemas may be found. Each
specific message object should specify its custom child elements as normal. As these messages
are not typically stored or updated, auto-properties and non-observable collections may be used
for the message object’s properties. Standard message attributes (i.e., provider name, provider
type, ref ID, and ICD version) are already declared and serialized by the superclass objects.
Each message should also specify an [XmlRoot] attribute to specify the root tag name of the
request, such as “addHarMsg”.

2.8.4 Requests

XML requests for a subsystem should be placed in the requests folder of the subsystem. Each
request should subclass from a subsystem-specific request base class, which itself extends the
Request<TResponse> class. This subsystem-specific base class should implement the
ProviderXsdFolder property to provide the folder name under which subsystem schemas may be
found. The TResponse generic type parameter of the class allows each request to specify the
response which is created by the subsystem to reply to the request. This information is used in a
variety of ways by lower layers of the system. Each specific request object should specify its
custom child elements as normal. As these requests are not typically stored or updated, auto-
properties and non-observable collections may be used for the message object’s properties.
Standard request elements and attributes (i.e., username, security token, provider name, provider
type, ref ID, and ICD version) are already declared and serialized by the superclass objects.
Each request should also specify an [XmlRoot] attribute to specify the root tag name of the
request, such as “addHarReq”.

2.8.5 Responses

XML responses for a subsystem should be placed in the responses folder of the subsystem. Each
response should subclass from a subsystem-specific response base class, which itself extends the
Request<TResponseData> class. This subsystem-specific base class should implement the
ProviderXsdFolder property to provide the folder name under which subsystem schemas may be
found. The TResponseData generic type parameter of the class allows each response to
specify the response data object type which is contained by the response. Responses should not
typically contain any properties themselves. The data for the response will be serialized by the
base class. Each response should specify an [XmlRoot] attribute to specify the root tag name
of the request, such as “addHarResp”.

Software Architecture Guidelines

SunGuide-SAG-2.0 17

2.8.5.1 Response Data Objects

The main body of response objects is not defined by the response itself, but rather a matching
response data object. These objects should typically be placed in the responseData folder under
the responses folder for the subsystem. These objects must extend ResponseData and specify
an [XmlType (“typeName”)] attribute which matches the XSD type name from the
schema. It is acceptable for multiple responses to share a response data object. If different
schema type names must be specified, a subclass of the custom response data object may be
created with a different [XmlType] declared. As these response data objects are not typically
stored or updated, auto-properties and non-observable collections may be used for the response
data object’s properties.

2.8.5.2 Retrieve Data Response Objects

Response data objects for retrieveDataResp schemas should follow the standard response data
architecture, but additionally should implement the IUserList<TPrivileges> interface.
This requires that the response data object provide a Users property which returns a list of
User<TPrivilege> objects. The TPrivilege type should be a type defined in the
subsystem’s objects folder which extends PrivilegeBase and specifies user privileges as a
set of Boolean attributes.

2.9 Subsystem Development

Creating a new subsystem using the generic library is generally a quick and easy process.
Following the steps outlined below will get you up and running rapidly. Table 2-5 details tools
that developers typically use to provide an efficient development environment.

Table 2-5 - Development Tools

Tool Required? Description
Microsoft Visual Studio 2010 Y The C#.NET integrated development environment

Jetbrains Resharper N
A C# refactoring tool used to provide increased
productivity

AccuRev N A change management repository

2.9.1 Creating a Project

Create a new Visual Studio project. The easiest method is to create a solution with three
projects, one for the library of functionality, one to create a console application, and one to create
a service. This allows easy debugging during development without the concern that files will be
out of synch with the service project.

Add the ITSGeneric Dynamic Link Library (DLL) reference for the generic library to each
project. If desired for debugging purposes, the actual ITSGeneric project can be added instead of
the DLL.

2.9.2 Steps to Start

The steps below will create a subsystem with limited functionality. Client connections will be
accepted and authenticate requests handled.

Software Architecture Guidelines

SunGuide-SAG-2.0 18

2.9.2.1 Extend User class

The base User class contains a username and permission level for the user. Class responsibilities
include creating a user, specifying the privilege names for given privilege values, and providing
an XML node type representing the user object.

 Create an enumeration for privilege names. The value of each member of the
enumeration corresponds to the bit in the permission level of the user.

o Important Note: The order in which the privilege names are defined in the
enumeration must be consistent with the respective permission_id stored in the
subsystem_permissions database table. The first privilege is associated with the
subsystem permission with permission_id = 0. The second privilege is associated
with the subsystem permission where permission_id = 1, etc.

o A subsystem must have at least as many permissions as subscriptions.
 Subscriptions must match up in order with the respective permissions for

that subscription.
 Example: The following permissions {stationData, stationStatus,

userData, configStations, setStatus} may be associated with the
subscriptions {stationData, stationStatus, userUpdates}. The names do not
have to match up, but the order must be the same. When a client
subscribes to data, the subscriptions are ANDed with the client’s
permissions to determine whether the subscription should succeed.

 Define a static integer member, specifying the number of privileges defined in the
privilege enumeration.

 Define a default constructor.
o Initialize the base numberOfPrivileges member to the static integer member
o Retrieve the resource manager using the main process static method.
o If any other constructors are created, ensure that these steps are included or the

default constructor is called.
 Define a public method to generate an XML node type for this user object. Typically, the

method name generateXml is used for this purpose.
o Log any exceptions that occur in this method.

2.9.2.2 Data Management Classes

A subsystem typically uses three data classes to manage ensuring the database and cached data
are kept in synch.

2.9.2.2.1 Data Access

The class used for data access controls all database retrievals and updates, ensuring the database
code is centralized. More code will be added to this class in Section 2.9.4. The steps below are
for creating a preliminary data access class with the ability to retrieve users and passwords.

 Define a private AdoDbUser class member.
 Define a constructor for the class.

o Instantiate the AdoDbUser class member.
 Provide a method for retrieving users.
 Provide a method for retrieving passwords.

Software Architecture Guidelines

SunGuide-SAG-2.0 19

2.9.2.2.2 System Data

The system data class controls updates to the cached data used by the system during runtime.
More code will be added to this class in Section 2.9.4. The steps below are for creating a
preliminary system data class with the ability to retrieve users and passwords.

 Define private class members for a list of users and passwords.
 Define a constructor for the class.

o Instantiate the class members.
 Provide a method for retrieving users.
 Provide a method for retrieving passwords.

2.9.2.2.3 Data Manager

The data manager class is responsible for keeping the database and cached data synchronized.
The class contains member variables for the data access and system data classes. Updates to the
database should be performed and checked before cached data is updated. The steps below are
for creating a preliminary class that can retrieve and update users and passwords. More code
will be added to this class in Section 2.9.4.

 Define private member variables for the subsystem’s data access and system data class
objects.

 Define a constructor.
o Initialize the subsystem’s system data and data access classes.

 Implement the updateSystemData() method that will refresh locally cached data with
current database data. This method is called on startup and whenever an
updateSystemDataMsg is received.

o Reset the system data users and passwords from the data access class.

2.9.2.3 Main Process

The main process contains startup methods for the subsystem and other methods for retrieving
data.

 Extends SubsystemMain to create a main process for this subsystem.
 Define private member variables.

o Define a data manager
 Define a constructor with a parameter of a string array (for the command line arguments).

o Call the base class constructor with the string array.
o Initialize the data manager class member.
o Implement all abstract functions including the following:

 runLoop
 Handle subsystem-specific startup procedures.
 Call the base method.
 Set startup completed flag (until this flag is set, no XML will be

processed by the subsystem).
 setDataMgr()

 Verify the data manager is the appropriate class type.
 Set the data manager class member.

 getDataMgr()—return subsystem-specific data manager member.

Software Architecture Guidelines

SunGuide-SAG-2.0 20

 createCustomizedResourceManager()
 This method, while still necessary, should not be used as a way to

retrieve constants. Instead, create a “Common Constants” class that
will have public static members that can be referenced throughout
the project.

 updateSystemData()
 Invoke the data manager’s updateSystemData method.
 Update users and passwords members via the data manager

member.
 Invoke the security controller member’s updateUsers method,

sending the updated user and password information.
 If the subsystem uses devices, instantiate the statusMgr member.

The status manager tracks the communication errors for devices.
 Provide schema location information for subsystem-specific requests,

messages, and responses.
 Add a method to setup the base schema location reference and

store it as a member variable.
 Override getReqSchemaLocation(), using the base schema location

member to set the subsystem-specific requests schema location.
 Override getRespSchemaLocation(), using the base schema

location member to set the subsystem-specific responses schema
location.

 Override getMsgSchemaLocation(), using the base schema
location member to set the subsystem-specific messages schema
location.

 instantiateSecurityController() sets the users and passwords stored by the
process.

 driverDisconnect() to process steps that need to be taken when a driver is
no longer connected. In some instances, no actions are necessary.

 Send change of device state messages to the client.
 Stop polling or other processing.

 driverReconnect() to process steps that need to be taken when a driver
reconnects to the system. Again, in some instances no actions are
necessary.

 Add devices to specific drivers.
 Restart polling or other processing.

 If devices are used by the subsystem, send XML messages for online
status changes to the appropriate driver(s) and process add/remove devices
from driver as necessary.

 addDevicesToDriver() to add one or more devices to the specified
drivers.

 removeDevicesFromDriver() to remove all devices from the
drivers.

 If using the status manager, override sendOnlineStatusMsg(). This
method is used by the status manager to send online status

Software Architecture Guidelines

SunGuide-SAG-2.0 21

messages to subscribed clients when a device changes operational
status.

 initialize() to add the supported ICD versions before calling the base
initialize().

 getProviderType() to return the appropriate string value for the
subsystem’s provider type.

2.9.2.4 Initial XML Handlers

The following steps will create handlers for subscribing and retrieving initial data (users only).
Once these are complete, other handlers may be added to perform additional functionality.

Figure 2-11 - Registering a request with the subsystem

 Extend the SubsystemHandler class to create an abstract class for this subsystem.
o This class will be extended by the other subsystem-specific handlers.
o Initialize subsystem-specific members.

 Subsystem-specific main process, data manager, etc.
o Provides common subsystem-specific functionality used by the other subsystem-

specific handlers.
 Can define methods to process sending requests down to the driver.
 Base handler constructor should not assign any types of requests,

messages, and responses supported.
 Extended subsystem-specific handlers—these steps should be followed for each handler

that is created.
o Each subsystem-specific handler should extend the base subsystem handler.
o Handler constructors.

 Assign the types of requests, responses, and messages supported by the
handler by registering the DataLibrary type with the handler.

 Handling of a specific request, response, or message
 A method must be created with the request, response, or message

as the only argument
 This method must be then passed in as the argument to the

registerRequestHandler method. This will tell the framework what
to call when the handler receives a particular message.

 Ensure the handler calls the registerXmlTransactions() method at the end
of the constructor. This will confirm to the subsystem that the local cache
of defined above must be used instead of an older registering method not
documented in this document.

Software Architecture Guidelines

SunGuide-SAG-2.0 22

2.9.2.5 Subscribe Handler

The subscribe handler should be created as discussed in 2.9.2.4. The only message this handler
should process in the subscribeReq. When returning a response, only the successful subscriptions
should be returned.

2.9.2.6 Retrieve Data Handler

The retrieve data handler should be created as discussed in 2.9.2.4. The subsystem should
retrieve, at a minimum, user data and a status list if it is a Data Bus provider. If a user requests
user data but a permission prevents them from retrieving all user data, the subsystem should
return the permissions for the user who requested the data.

2.9.3 Running the Subsystem

After completing the above steps, the subsystem can be started. The command line parameters
are the name of the process, the configuration file location and an optional “-d” debug mode flag.
The best method of debugging system startup is to have the logLevel flag in the configuration
file set to “slDetail” and the –d command line flag set. Then, after starting the process, view the
log file to see detailed messages of the startup sequence of events. If any errors occur, these will
be logged.

Prior to logging into the subsystem, the following steps must be performed in the database:

 Add the subsystem name to the SUBSYSTEMS table.
 Add the appropriate permissions to the SUBSYSTEM_PERMISSIONS table.
 Add permissions for a user to the USER_PERMISSIONS table.

Once the process has started successfully, use a client tester program to send an authenticate
request to the subsystem with the user whose permissions were added above. Once successfully
authenticated, retrieve the user data. The data should contain permissions for the user.

2.9.4 Finishing the Subsystem

The rest of the steps for creating a subsystem will be specific to the subsystem being created.
The following list contains details to consider.

 Examine what schema requests/responses/messages your subsystem must handle. Then
try to combine schemas together to create a handler. For example, a configuration handler
can be created that handles add, modify and delete requests and responses.

 Add appropriate classes for objects needed by the system.
o If accessing from the database, extend AdoDbItem for database connectivity.
o Modify the data management classes to retrieve and update the database objects.

2.10 Driver Development

Creating a new driver using the generic library is generally a quick and easy process. Following
the steps outlined below will get you up and running rapidly. Table 2-5 details tools that
developers typically use to provide an efficient development environment.

2.10.1 Creating a Project

Create a new Visual Studio project. The easiest method is to create a solution with three
projects, one for the library of functionality, one to create a console application, and one to create

Software Architecture Guidelines

SunGuide-SAG-2.0 23

a service. This allows easy debugging during development without the concern that files will be
out of synch with the service project.

Add the ITSGeneric DLL reference for the generic library to each project. If desired for
debugging purposes, the actual ITSGeneric project can be added instead of the DLL.

2.10.2 Steps to Start

Creating a driver is similar to creating a subsystem, with a few differences. There are no users in
a driver, no database access, and no subscribe or retrieve data handlers. Most of the functionality
is contained within the command classes.

2.10.2.1 Data Management

Other than data retrieved from the configuration file, a driver typically receives its data from the
associated subsystem. Therefore only a system data class is needed to store cached data.

 DataLibrary objects should be created for all driver-specific items.
o Driver specific messages and request/response pairs should be created

 Create a system data class to store driver-specific cached data.
o Define a constructor, initializing driver-specific cached data.
o Provide necessary members/methods to manage pertinent driver-specific cached

data.
o Provide getter methods for appropriate driver-specific items.
o Define a method to reinitialize driver cache. This method should be called when

the client process disconnects from the driver.

2.10.2.2 Main Process

Either the ExtGenCommDriverMain or GenCommDriverMain class should be extended to create
a new driver. The ExtGenCommDriverMain allows asynchronous device communication while
GenCommDriverMain performs communications synchronously.

 Define a system data member.
 Define a default constructor.
 Implement abstract and virtual functions.

o instantiateDataMgr() to initialize the system data member responsible for caching
driver data.

o runLoop()
 Handle driver-specific startup procedures.
 Set the provider type.
 Instantiate the member class responsible for managing cached driver data.
 Call the base class runLoop().

o getDataMgr() to return the class member responsible for manager cached driver
data.

o createCustomizedResourceManager() must be implemented however should not be
used. Instead, create a “Common Constants” class that will have public static
members that can be referenced throughout the project.

o Provide schema location information for subsystem-specific requests, messages,
and responses.

Software Architecture Guidelines

SunGuide-SAG-2.0 24

 Add a method to setup the base schema location reference and store it as a
member variable.

 Override getReqSchemaLocation(), using the base schema location
member to set the subsystem-specific requests schema location.

 Override getRespSchemaLocation(), using the base schema location
member to set the subsystem-specific responses schema location.

 Override getMsgSchemaLocation(), using the base schema location
member to set the subsystem-specific messages schema location.

o clientDisconnect() to process steps that need to be taken when a client is no longer
connected such as clearing driver table information and reinitializing the driver
cache.

o initialize() to add the supported ICD versions before calling the base.initialize().
o getProviderType() to return the appropriate string value.

2.10.2.3 Handlers

See Section 2.9.2.4 for information on creating handlers for the driver. The only difference is
that DriverHandler should be overridden rather than the SubsystemHandler.

2.10.2.4 Creating Commands

The driver device manager handles collecting data packets until a command packet is complete.
A command should be created for each type of communication with a device (i.e., poll request,
reset command).

 Define driver command classes for each type of device command supported by the driver,
extending the DriverCommand class.

o Override the following methods:
 getCommandName()
 receiveResponse()
 executeNextStep()
 callSuccessfulResponse()
 callUnsuccessfuleResponse()
 handleCommandTimeout()

o When adding equipment to the driver’s local cache, also add the appropriate
address and protocol information to DriverMain’s member tables, using methods
addAddressToTable() and addProtocolToTable().

 Instantiate the appropriate driver-specific command for each command request sent to the
driver from within the appropriate driver-specific XML handler, and send it to the driver
device manager for processing.

o Retrieve appropriate address and protocol information from the DriverMain’s
member tables, using methods getAddressFromTable() and
getProtocolFromTable().

 When instantiating the command, these protocol and address items are listed as
parameters to the command, as well as the calling XML handler object.

o To send the command down to the driver device manager, call
sendDriverCommandToDeviceMgr().

o XML handlers instantiating driver commands must include methods invoked by
the driver command to send successful/unsuccessful responses to the client. The

Software Architecture Guidelines

SunGuide-SAG-2.0 25

names of these methods are defined in the driver-specific command classes’
callSuccessfulResponse() and callUnsuccessfulResponse() methods.

2.10.3 Running the Driver

After completing the above steps, the driver can be started. The command line parameters are
the name of the process, the configuration file location, the name of the subsystem for this driver,
and an optional “-d” debug mode flag. The best method of debugging system startup is to have
the debugMode flag in the configuration file set to “slDetail”. Then, after starting the process,
view the log file to see detailed messages of the startup sequence of events. If any errors occur,
these will be logged.

Software Architecture Guidelines

SunGuide-SAG-2.0 26

3.0 Notes

None.

